With the increasing number of applications of Global
navigation satellite system, the modeling of the ionosphere is a crucial
element for precise positioning. Indeed, the ionosphere delays the
electromagnetic waves which pass through it and induces a delay of propagation
related to the electronic density (TEC) Total Electronic Content and to the
frequency of the wave. The impact of this ionospheric error often results in a
poor determination of the station’s position, particularly in strong solar
activity. The first part of this paper focuses on a bibliographic study
oriented first of all on the study of the ionosphere in relation to solar
activity and secondly on the determination of the total electron content using
GNSS measurements from the IGS network reference stations. Measurements were made on two permanent stations “RABT”, “TETN”.
We selected years of GNSS measurements to evaluate the geomagnetic impact on
the ionosphere, 2001, 2009 and 2013. A description of the ionospheric
disturbances and geomagnetic storms was analyzed by determination of TEC,
especially in high solar activity. The results show a strong dependence of the
ionospheric activity with the geomagnetic activity.
References
[1]
Warnant, R. (2006) l’effet de l’atmosphère terrestre sur les GNSS: Une perturbation ou un signal géophysique? Bulletin de la Société géographique de Liège, 47, 19-23.
[2]
International GNSS Service. ftp://cddis.gsfc.nasa.gov/gnss/products/
[3]
Smith, C.A. (1987) Ionospheric TEC Estimation with a Single-Frequency GPS Receiver. The Effect of the Ionosphere on Communication, Navigation and Surveillance Systems. Ionospheric Effects Symposium. Naval Research Laboratory.
[4]
Warnant, R. (1996) Etude du comportement du contenu électronique total et de sesirrégularités dans une région de latitude moyenne. Application aux calculs depositions relatives par le GPS. Observatoire Royal de Belgique.
[5]
Jin, R., Jin, S. and Feng, G. (2012) M_DCB: Matlab Code for Estimating GNSS Satellite and Receiver Differential Code Biases. GPS Solutions, 16, 541-548.
https://doi.org/10.1007/s10291-012-0279-3
[6]
Shukla, A.K., Neha, N., Saurabh, D., Nishkam, J., Sivaraman, M.R. and Bandyopadhyay, K. (2008) Statistical Comparison of Various Interpolation Algorithms for Grid Based Single Shell Ionospheric Model over Indian Region. Journal of Global Positioning Systems, 7, 72-79. https://doi.org/10.5081/jgps.7.1.72
[7]
Gao, Y. and Liu, Z.Z. (2002) Precise Ionosphere Modelling Using Regional GPS Network Data. Journal of Global Positioning Systems, 1, 18-24.
https://doi.org/10.5081/jgps.1.1.18
[8]
Schaer, S. (1999) Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System. Thesis, University of Berne, Berne, 228 p.
[9]
Seeber, G. (2003) Satellite Geodesy. 2nd Edition, Walter de Gruyter, Berlin, 589 p.
https://doi.org/10.1515/9783110200089
[10]
Liu, J., Chen, R., Wang, Z. and Zhang, H. (2011) Spherical Cap Harmonic Model for Mapping and Predicting Regional TEC. GPS Solutions, 15, 109-119.
https://doi.org/10.1007/s10291-010-0174-8
[11]
Davies, K. (1990) Ionospheric Radio. IEEE Electromagnetic Waves Series 31, Peter Peregrinus, London.
[12]
Schaer, S., Gurtner, W. and Feltens, J (1998) IONEX: The IONosphere map Exchange Format Version 1. Proceedings of the IGS AC Workshop, Darmstadt, 9-11 February 1998, 233-247.