Ancient European lakes are
clustered within a radius of 300 km around Lake Ohrid. Information concerning
microbial diversity in these lakes is limited. We studied diversity of the
dominant prokaryotic phylotypes in the sediments in one of these lakes, known
as Lake Pamvotis. The analysis was performed in samples from two stations for
four seasons of the same year. DNA extraction followed by PCR amplification
(16S rDNA), Denaturing Gradient Gel Electrophoresis, cloning and sequencing was applied in order to
reveal the sequence signatures of the dominant bacterial and archaeal
phylotypes. Bacterial and archaeal cell numbers were quantified by real-time
PCR. Several environmental variables measured in parallel, including pH,
Nickel, Chromium, Arsenic, Calcium, Total Nitrogen and Total Carbon, were found
to affect strongly the prokaryotic abundances. Most of the identified sequences
of Bacteria belong to Proteobacteria and most of the sequences of Archaea belong to Euryarchaeota. The great majority of these bacterial (84.21%) and
archaeal sequences (95.65%) have no cultivated counterparts in the databases.
In addition, many of these bacterial (50.88%) and archaeal sequences (20.65%)
correspond to potentially new species. Six of the bacterial sequences
constitute a new class of Cyanobacteria which we have named “Lake Pamvotis cluster” (LPC). Our findings highlight Lake
Pamvotis as a habitat for several previously unidentified species of Bacteria
and Archaea.
References
[1]
Wilson, A.B., Glaubrecht, M. and Meyer, A. (2004) Ancient Lakes as Evolutionary Reservoirs: Evidence from the Thalassoid Gastropods of Lake Tanganyika. Proceedings of the Royal Society B: Biological Sciences, 271, 529-536. https://doi.org/10.1098/rspb.2003.2624
[2]
Wagner, B. and Wilke, T. (2011) Preface “Evoltionary and Geological History of the Balkan Lakes Ohrid and Prespa”. Biogeosciences, 8, 995-998. https://doi.org/10.5194/bg-8-995-2011
[3]
Sherbakov, D.Y. (1999) Molecular Phylogenetic Studies on the Origin of Biodiversity in Lake Baikal. Trends in Ecology & Evolution, 14, 92-95. https://doi.org/10.1016/S0169-5347(98)01543-2
[4]
Frogley, M.R., Griffiths, H.I. and Heaton, T.H.E. (2001) Historical Biogeography and Late Quaternary Environmental Change of Lake Pamvotis, Ioannina (North-Western Greece): Evidence from Ostracods. Journal of Biogeography, 28, 745-756. https://doi.org/10.1046/j.1365-2699.2001.00582.x
[5]
Albrecht, C. and Wilke, T. (2008) Ancient Lake Ohrid: Biodiversity and Evolution. Hydrobiologia, 615, 103-140. https://doi.org/10.1007/s10750-008-9558-y
[6]
Stankovic, S. (1960) The Balkan Lake Ohrid and Its Living World. Monographiae Biologicae, IX, Dr. W. Junk Publishers, The Hague.
[7]
Vogel, H., Wessels, M., Albrecht, C., Stich, H.B. and Wagner, B. (2010) Spatial Variability of Recent Sedimentation in Lake Ohrid (Albania/Macedonia). Biogeosciences, 7, 3333-3342. https://doi.org/10.5194/bg-7-3333-2010
[8]
Griffiths, H.I., Reed, J.M., Leng, M.J., Ryan, S. and Petkovski, S. (2002) The Recent Palaeoecology and Conservation Status of Balkan Lake Dojran. Biological Conservation, 104, 35-49. https://doi.org/10.1016/S0006-3207(01)00152-5
[9]
Albrecht, C., Hauffe, T., Schreiber, K., Trajanovski, S. and Wilke, T. (2009) Mollusc Biodiversity and Endemism in the Potential Ancient Lake Trichonis, Greece. Malacologia, 51, 357-375. https://doi.org/10.4002/040.051.0209
[10]
Frogley, M.R. and Preece, R.C. (2007) A Review of the Aquatic Mollusca from Lake Pamvotis, Ioannina, an Ancient Lake in NW Greece. Journal of Conchology, 39, 271-296.
[11]
Tzedakis, P.C., Lawson, I.T., Frogley, M.R., Hewitt, G.M. and Preece, R.C. (2002) Buffered Tree Population Changes in a Quaternary Refugium: Evolutionary Implications. Science, 297, 2044-2047. https://doi.org/10.1126/science.1073083
[12]
Vareli, K., Briasoulis, E., Pilidis, G. and Sainis, I. (2009) Molecular Confirmation of Planktothrix rubescens as the Cause of Intense, Microcystin—Synthesizing Cyanobacterial Bloom in Lake Ziros, Greece. Harmful Algae, 8, 447-453. https://doi.org/10.1016/j.hal.2008.09.005
[13]
Vareli, K., Pilidis, G., Mavrogiorgou, M.C., Briasoulis, E. and Sainis, I. (2009) Molecular Characterization of Cyanobacterial Diversity and Yearly Fluctuations of Microcystin Loads in a Suburban Mediterranean Lake (Lake Pamvotis, Greece). Journal of Environmental Monitoring, 11, 1506-1512. https://doi.org/10.1039/b903093j
[14]
Kormas, K.A., Gkelis, S., Vardaka, E. and Moustaka-Gouni, M. (2011) Morphological and Molecular Analysis of Bloom-forming Cyanobacteria in two Eutrophic, Shallow Mediterranean Lakes. Limnologica—Ecology and Management of Inland Waters, 41, 167-173. https://doi.org/10.1016/j.limno.2010.10.003
[15]
Kormas, K.A., Vardaka, E., Moustaka-Gouni, M., Kontoyanni, V., Petridou, E., Gkelis, S., et al. (2010) Molecular Detection of Potentially Toxic Cyanobacteria and their Associated Bacteria in Lake Water Column and Sediment. World Journal of Microbiology and Biotechnology, 26, 1473-1482. https://doi.org/10.1007/s11274-010-0322-x
[16]
Gkelis, S., Rajaniemi, P., Vardaka, E., Moustaka-Gouni, M., Lanaras, T. and Sivonen, K. (2005) Limnothrix redekei (Van Goor) Meffert (Cyanobacteria) Strains from Lake Kastoria, Greece form a Separate Phylogenetic Group. Microbial Ecology, 49, 176-182. https://doi.org/10.1007/s00248-003-2030-7
[17]
Fotyma, M., Jadczyszyn, T. and Jozefaciuk, G. (1998) Hundredth Molar Calcium Chloride Extraction Procedure. Part II: Calibration with Conventional Soil Testing Methods for pH. Communications in Soil Science and Plant Analysis, 29, 1625-1632. https://doi.org/10.1080/00103629809370054
[18]
Jackson, P.E. (2006) Ion Chromatography in Environmental Analysis. Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd., Chichester.
[19]
Kotti, M.E., Vlessidis, A.G. and Evmiridis, N.P. (2000) Determination of Phosphorous and Nitrogen in the Sediment of Lake “Pamvotis” (Greece). International Journal of Environmental Analytical Chemistry, 78, 455-467. https://doi.org/10.1080/03067310008041360
[20]
Ashley, K., Andrews, R.N., Cavazos, L. and Demange, M. (2001) Ultrasonic Extraction as a Sample Preparation Technique for Elemental Analysis by Atomic Spectrometry. Journal of Analytical Atomic Spectrometry, 16, 1147-1153. https://doi.org/10.1039/b102027g
[21]
Tamaki, H., Sekiguchi, Y., Hanada, S., Nakamura, K., Nomura, N., Matsumura, M., et al. (2005) Comparative Analysis of Bacterial Diversity in Freshwater Sediment of a Shallow Eutrophic Lake by Molecular and Improved Cultivation-Based Techniques. Applied and Environmental Microbiology, 71, 2162-2169. https://doi.org/10.1128/AEM.71.4.2162-2169.2005
[22]
Berg, K.A., Lyra, C., Sivonen, K., Paulin, L., Suomalainen, S., Tuomi, P., et al. (2009) High Diversity of Cultivable Heterotrophic Bacteria in Association with Cyanobacterial Water Blooms. The ISME Journal, 3, 314-325. https://doi.org/10.1038/ismej.2008.110
[23]
Casamayor, E.O., Schafer, H., Baneras, L., Pedros-Alio, C. and Muyzer, G. (2000) Identification of and Spatio-Temporal Differences between Microbial Assemblages from Two Neighboring Sulfurous Lakes: Comparison by Microscopy and Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology, 66, 499-508. https://doi.org/10.1128/AEM.66.2.499-508.2000
[24]
Muyzer, G., Teske, A., Wirsen, C.O. and Jannasch, H.W. (1995) Phylogenetic Relationships of Thiomicrospira Species and Their Identification in Deep-Sea Hydrothermal Vent Samples by Denaturing Gradient Gel Electrophoresis of 16S rDNA Fragments. Archives of Microbiology, 164, 165-172. https://doi.org/10.1007/BF02529967
[25]
Klappenbach, J.A., Dunbar, J.M. and Schmidt, T.M. (2000) rRNA Operon Copy Number Reflects Ecological Strategies of Bacteria. Applied and Environmental Microbiology, 66, 1328-1333. https://doi.org/10.1128/AEM.66.4.1328-1333.2000
[26]
Muyzer, G., de Waal, E.C. and Uitterlinden, A.G. (1993) Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695-700
[27]
Janse, I., Meima, M., Kardinaal, W.E. and Zwart, G. (2003) High-Resolution Differentiation of Cyanobacteria by using rRNA-Internal Transcribed Spacer Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology, 69, 6634-6643. https://doi.org/10.1128/AEM.69.11.6634-6643.2003
[28]
Vokou, D., Vareli, K., Zarali, E., Karamanoli, K., Constantinidou, H.I., Monokrousos, N., et al. (2012) Exploring Biodiversity in the Bacterial Community of the Mediterranean Phyllosphere and Its Relationship with Airborne Bacteria. Microbial Ecology, 64,714-724. https://doi.org/10.1007/s00248-012-0053-7
[29]
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) Mega5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28, 2731-2739. https://doi.org/10.1093/molbev/msr121
[30]
Romero, J.R., Kagalou, I., Imberger, J., Hela, D., Kotti, M., Bartzokas, A., et al. (2002) Seasonal Water Quality of Shallow and Eutrophic Lake Pamvotis, Greece: Implications for Restoration. Hydrobiologia, 474, 91-105. https://doi.org/10.1023/A:1016569124312
[31]
Daskalou, V., Vreca, P., Muri, G. and Stalikas, C. (2009) Recent Environmental Changes in the Shallow Lake Pamvotis (NW Greece): Evidence from Sedimentary Organic Matter, Hydrocarbons, and Stable Isotopes. Archives of Environmental Contamination and Toxicology, 57, 21-31. https://doi.org/10.1007/s00244-008-9246-y
[32]
Haller, L., Tonolla, M., Zopfi, J., Peduzzi, R., Wildi, W. and Pote, J. (2011) Composition of Bacterial and Archaeal Communities in Freshwater Sediments with Different Contamination Levels (Lake Geneva, Switzerland). Water Research, 45, 1213-1228. https://doi.org/10.1016/j.watres.2010.11.018
[33]
Gough, H.L. and Stahl, D.A. (2011) Microbial Community Structures in Anoxic Freshwater Lake Sediment along a Metal Contamination Gradient. The ISME Journal, 5, 543-558. https://doi.org/10.1038/ismej.2010.132
[34]
Bhattarai, S., Ross, K.A., Schmid, M., Anselmetti, F.S. and Burgmann, H. (2012) Local Conditions Structure Unique Archaeal Communities in the Anoxic Sediments of Meromictic Lake Kivu. Microbial Ecology, 64, 291-310. https://doi.org/10.1007/s00248-012-0034-x
[35]
Borrel, G., Lehours, A.C., Crouzet, O., Jezequel, D., Rockne, K., Kulczak, A., et al. (2012) Stratification of Archaea in the Deep Sediments of a Freshwater Meromictic Lake: Vertical Shift from Methanogenic to Uncultured Archaeal Lineages. PLoS ONE, 7, e43346. https://doi.org/10.1371/journal.pone.0043346
[36]
MacDonald, D.D., Ingersoll, C.G. and Berger, T.A. (2000) Development and Evaluation of Consensus-Based Sediment Quality Quidelines for Freshwater Ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20-31. https://doi.org/10.1007/s002440010075
[37]
Stalikas, C., Pilidis, G. and Karayannis, M. (1994) Heavy Metal Contents in Sediments of the Lake Ioannina and Kalamas River in North-Western Greece. Fresenius Environmental Bulletin, 3, 575-579.
[38]
Watzin, M.C, Puka, V. and Naumoski, T.B. (2002) Lake Ohrid and Its Watershed, State of the Environment Report. Lake Ohrid Conservation Project, Tirana, Ohrid.
[39]
Skoulikidis, N.T. (2008) Defining Chemical Status of a Temporary Mediterranean River. Journal of Environmental Monitoring, 10, 842-852. https://doi.org/10.1039/b800768c
[40]
Ioannides, K., Stamoulis, K., Papachristodoulou, C., Tziamou, E., Markantonaki, C. and Tsodoulos, I. (2015) Distribution of Heavy Metals in Sediment Cores of Lake Pamvotis (Greece): A Pollution and Potential Risk Assessment. Environmental Monitoring and Assessment, 187, 4209. https://doi.org/10.1007/s10661-014-4209-4
[41]
Ye, W., Liu, X., Lin, S., Tan, J., Pan, J., Li, D., et al. (2009) The Vertical Distribution of Bacterial and Archaeal Communities in the Water and Sediment of Lake Taihu. FEMS Microbiology Ecology, 70, 107-120. https://doi.org/10.1111/j.1574-6941.2009.00761.x
[42]
Teske, A. and Sorensen, K.B. (2008) Uncultured Archaea in Deep Marine Subsurface Sediments: Have We Caught Them All? The ISME Journal, 2, 3-18. https://doi.org/10.1038/ismej.2007.90
[43]
Lipp, J.S., Morono, Y., Inagaki, F. and Hinrichs, K.U. (2008) Significant Contribution of Archaea to Extant Biomass in Marine Subsurface Sediments. Nature, 454, 991-994. https://doi.org/10.1038/nature07174
[44]
Jiang, H., Dong, H., Yu, B., Ye, Q., Shen, J., Rowe, H., et al. (2008) Dominance of Putative Marine Benthic Archaea in Qinghai Lake, North-Western China. Environmental Microbiology, 10, 2355-2367. https://doi.org/10.1111/j.1462-2920.2008.01661.x
[45]
Buck, U., Grossart, H.P., Amann, R. and Pernthaler, J. (2009) Substrate Incorporation Patterns of Bacterioplankton Populations in Stratified and Mixed Waters of a Humic Lake. Environmental Microbiology, 11, 1854-1865. https://doi.org/10.1111/j.1462-2920.2009.01910.x
[46]
Glockner, F.O., Zaichikov, E., Belkova, N., Denissova, L., Pernthaler, J., Pernthaler, A., et al. (2000) Comparative 16S rRNA analysis of Lake Bacterioplankton Reveals Globally Distributed Phylogenetic Clusters Including an Abundant Group of Actinobacteria. Applied and Environmental Microbiology, 66, 5053-5065. https://doi.org/10.1128/AEM.66.11.5053-5065.2000
[47]
Hiorns, W.D., Methe, B.A., Nierzwicki-Bauer, S.A. and Zehr, J.P. (1997) Bacterial Diversity in Adirondack Mountain Lakes as Revealed by 16S rRNA Gene Sequences. Applied and Environmental Microbiology, 63, 2957-2960.
[48]
Zwisler, W., Selje, N. and Simon, M. (2003) Seasonal Patterns of the Bacterioplankton Community Composition in a Large Mesotrophic Lake. Aquatic Microbial Ecology, 31, 211-225. https://doi.org/10.3354/ame031211
[49]
Rinta-Kanto, J.M., Saxton, M.A., DeBruyn, J.M., Smith, J.L., Marvin, C.H., Krieger, K.A., et al. (2009) The Diversity and Distribution of Toxigenic Microcystis spp. in Present Day and Archived Pelagic and Sediment Samples from Lake Erie. Harmful Algae, 8, 385-394. https://doi.org/10.1016/j.hal.2008.08.026
[50]
Vareli, K., Touka, A., Theurillat, X., Briasoulis, E., Pilidis, G. and Sainis, I. (2015) Microcystins in Two Low Nutrient Lakes in the Epirus Region of North-West Greece. CLEAN—Soil, Air, Water, 43, 1307-1315. https://doi.org/10.1002/clen.201400482
[51]
Incagnone, G., Marrone, F., Barone, R., Robba, L. and Naselli-Flores, L. (2014) How do Freshwater Organisms Cross the “Dry Ocean”? A Review on Passive Dispersal and Colonization Processes with a Special Focus on Temporary Ponds. Hydrobiologia, 750, 103-123. https://doi.org/10.1007/s10750-014-2110-3
[52]
Padisák, J., Vasas, G. and Borics, G. (2015) Phycogeography of Freshwater Phytoplankton: Traditional Knowledge and New Molecular Tools. Hydrobiologia, 764, 3-27. https://doi.org/10.1007/s10750-015-2259-4
[53]
Costello, E.K. and Schmidt, S.K. (2006) Microbial Diversity in Alpine Tundra Wet Meadow Soil: Novel Chloroflexi from a Cold, Water-Saturated Environment. Environmental Microbiology, 8, 1471-1486. https://doi.org/10.1111/j.1462-2920.2006.01041.x
[54]
Liu, F.H., Lin, G.H., Gao, G., Qin, B.Q., Zhang, J.S., Zhao, G.P., et al. (2009) Bacterial and Archaeal Assemblages in Sediments of a Large Shallow Freshwater Lake, Lake Taihu, as Revealed by Denaturing Gradient Gel Electrophoresis. Journal of Applied Microbiology, 106, 1022-1032. https://doi.org/10.1111/j.1365-2672.2008.04069.x
[55]
Zwart, G., Crump, B.C., Kamst-van Agterveld, M.P., Hagen, F. and Han, S-K. (2002) Typical Freshwater Bacteria: An Analysis of Available 16S rRNA Gene Sequences from Plankton of Lakes and Rivers. Aquatic Microbial Ecology, 28, 141-155. https://doi.org/10.3354/ame028141
[56]
Eiler, A. and Bertilsson, S. (2004) Composition of Freshwater Bacterial Communities Associated with Cyanobacterial Blooms in Four Swedish Lakes. Environmental Microbiology, 6, 1228-1243. https://doi.org/10.1111/j.1462-2920.2004.00657.x
[57]
Schwarz, J.I., Eckert, W. and Conrad, R. (2007) Community Structure of Archaea and Bacteria in a Profundal Lake Sediment Lake Kinneret (Israel). Systematic and Applied Microbiology, 30, 239-254. https://doi.org/10.1016/j.syapm.2006.05.004
[58]
Chan, O.C., Claus, P., Casper, P., Ulrich, A., Lueders, T. and Conrad, R. (2005) Vertical Distribution of Structure and Function of the Methanogenic Archaeal Community in Lake Dagow Sediment. Environmental Microbiology, 7, 1139-1149. https://doi.org/10.1111/j.1462-2920.2005.00790.x
[59]
Koizumi, Y., Takii, S. and Fukui, M. (2004) Depth-related Change in Archaeal Community Structure in a Freshwater Lake Sediment as Determined with Denaturing Gradient Gel Electrophoresis of Amplified 16S rRNA Genes and Reversely Transcribed rRNA Fragments. FEMS Microbiology Ecology, 48, 285-292. https://doi.org/10.1016/j.femsec.2004.02.013
[60]
Glissman, K., Chin, K.J., Casper, P. and Conrad, R. (2004) Methanogenic Pathway and Archaeal Community Structure in the Sediment of Eutrophic Lake Dagow: Effect of Temperature. Microbial Ecology, 48, 389-399. https://doi.org/10.1007/s00248-003-2027-2
[61]
Barberan, A., Fernandez-Guerra, A., Auguet, J.C., Galand, P.E. and Casamayor, E.O. (2011) Phylogenetic Ecology of Widespread Uncultured Clades of the Kingdom Euryarchaeota. Molecular Ecology, 20, 1988-1996. https://doi.org/10.1111/j.1365-294X.2011.05057.x
[62]
Pierre, E.G., Connie, L. and Warwick, F.V. (2006) Remarkably Diverse and Contrasting Archaeal Communities in a Large Arctic River and the Coastal Arctic Ocean. Aquatic Microbial Ecology, 44, 115-126. https://doi.org/10.3354/ame044115
[63]
Lazar, C.S., L’Haridon, S., Pignet, P. and Toffin, L. (2011) Archaeal Populations in Hypersaline Sediments Underlying Orange Microbial Mats in the Napoli Mud Volcano. Applied and Environmental Microbiology, 77, 3120-3131. https://doi.org/10.1128/AEM.01296-10
[64]
Grokopf, R., Stubner, S. and Liesack, W. (1998) Novel Euryarchaeotal Lineages Detected on Rice Roots and in the Anoxic Bulk Soil of Flooded Rice Microcosms. Applied and Environmental Microbiology, 64, 4983-4989.
Rudiger, O.A. and Casamayor, O.E. (2016) High Occurrence of Pacearchaeota and Woesearchaeota (Archaea Superphylum DPANN) in the Surface Waters of Oligotrophic High-Altitude Lakes. Environmental Microbiology Reports, 8, 210-217. https://doi.org/10.1111/1758-2229.12370
[68]
Castelle, C.J., Wrighton, K.C., Thomas, B.C., Hug, L.A., Brown, C.T., Wilkins, M.J., et al. (2015) Genomic Expansion of Domain Archaea Highlights Roles for Organisms from New Phyla in Anaerobic Carbon Cycling. Current Biology, 25, 690-701. https://doi.org/10.1016/j.cub.2015.01.014
[69]
Buckles, L.K., Villanueva, L., Weijers, J.W., Verschuren, D. and Damste, J.S. (2013) Linking Isoprenoidal GDGT Membrane Lipid Distributions with Gene Abundances of Ammonia-Oxidizing Thaumarchaeota and Uncultured Crenarchaeotal Groups in the Water Column of a Tropical Lake (Lake Challa, East Africa). Environmental Microbiology, 15, 2445-2462. https://doi.org/10.1111/1462-2920.12118
[70]
Pester, M., Schleper, C. and Wagner, M. (2011) The Thaumarchaeota: An Emerging View of Their Phylogeny and Ecophysiology. Current Opinion in Microbiology, 14, 300-306. https://doi.org/10.1016/j.mib.2011.04.007
[71]
Brochier-Armanet, C., Boussau, B., Gribaldo, S. and Forterre, P. (2008) Mesophilic Crenarchaeota: Proposal for a Third Archaeal Phylum, the Thaumarchaeota. Nature Reviews Microbiology, 6, 245-252. https://doi.org/10.1038/nrmicro1852
Biddle, J.F., Lipp, J.S., Lever, M.A., Lloyd, K.G., Sorensen, K.B., Anderson, R., et al. (2006) Heterotrophic Archaea Dominate Sedimentary Subsurface Ecosystems of Peru. PNAS, 103, 3846-3851. https://doi.org/10.1073/pnas.0600035103
[74]
Yin, H., Niu, J., Ren, Y., Cong, J., Zhang, X., Fan, F., et al. (2015) An Integrated Insight into the Response of Sedimentary Microbial Communities to Heavy Metal Contamination. Scientific Reports, 5, Article No. 14266. https://doi.org/10.1038/srep14266
[75]
Jung, J., Yeom, J., Han, J., Kim, J. and Park, W. (2012) Seasonal Changes in Nitrogen-Cycle Gene Abundances and in Bacterial Communities in Acidic Forest Soils. Journal of Microbiology, 50, 365-373. https://doi.org/10.1007/s12275-012-1465-2
[76]
Bini, E. (2010) Archaeal Transformation of Metals in the Environment. FEMS Microbiology Ecology, 73, 1-16. https://doi.org/10.1111/j.1574-6941.2010.00876.x
[77]
Burkhardt, E.M., Bischoff, S., Akob, D.M., Büchel, G. and Küsel, K. (2011) Heavy Metal Tolerance of Fe(III)-Reducing Microbial Communities in Contaminated Creek Bank Soils. Applied and Environmental Microbiology, 77, 3132-3136. https://doi.org/10.1128/AEM.02085-10
[78]
Gupta, K., Chatterjee, C. and Gupta, B. (2012) Isolation and Characterization of Heavy Metal Tolerant Gram-Positive Bacteria with Bioremedial Properties from Municipal Waste Rich Soil of Kestopur Canal (Kolkata), West Bengal, India. Biologia, 67, 827-836. https://doi.org/10.2478/s11756-012-0099-5
[79]
Kemmitt, S.J., Wright, D., Goulding, K.W.T. and Jones, D.L. (2006) pH Regulation of Carbon and Nitrogen Dynamics in Two Agricultural Soils. Soil Biology and Biochemistry, 38, 898-911. https://doi.org/10.1016/j.soilbio.2005.08.006
[80]
Ban, Q., Li, J., Zhang, L., Zhang, Y. and Jha, A.K. (2013) Phylogenetic Diversity of Methanogenic Archaea and Kinetics of Methane Production at Slightly Acidic Conditions of an Anaerobic Sludge. International. Journal of Agriculture and Biology, 15, 347-351.
[81]
Brauer, S.L., Cadillo-Quiroz, H., Ward, R.J., Yavitt, J.B. and Zinder, S.H. (2011) Methanoregula Boonei gen. nov., sp. nov., an Acidiphilic Methanogen Isolated from an Acidic Peat Bog. International Journal of Systematic and Evolutionary Microbiology, 61, 45-52. https://doi.org/10.1099/ijs.0.021782-0
[82]
Nam, Y.D., Sung, Y., Chang, H.W., Roh, S.W., Kim, K.H., Rhee, S.K., et al. (2008) Characterization of the Depth-Related Changes in the Microbial Communities in Lake Hovsgol Sediment by 16S rRNA Gene-Based Approaches. The Journal of Microbiology, 46, 125-136. https://doi.org/10.1007/s12275-007-0189-1
[83]
Lim, J., Woodward, J., Tulaczyk, S., Christoffersen, P. and Cummings, S.P. (2010) Analysis of the Microbial Community and Geochemistry of a Sediment Core from Great Slave Lake, Canada. Antonie van Leeuwenhoek, 99, 423-430. https://doi.org/10.1007/s10482-010-9500-y
[84]
Lucheta, A.R., Otero, X.L., Macías, F. and Lambais, M.R. (2013) Bacterial and Archaeal Communities in the Acid Pit Lake Sediments of a Chalcopyrite Mine. Extremophiles: Life under Extreme Conditions, 17, 941-951.
[85]
Zhang, J., Yang, Y., Zhao, L., Li, Y., Xie, S. and Liu, Y. (2014) Distribution of Sediment Bacterial and Archaeal Communities in Plateau Freshwater Lakes. Applied Microbiology and Biotechnology, 99, 3291-3302. https://doi.org/10.1007/s00253-014-6262-x
[86]
Liao, X., Chen, C., Zhang, J., Dai, Y., Zhang, X. and Xie, S. (2014) Operational Performance, Biomass and Microbial Community Structure: Impacts of Backwashing on Drinking Water Biofilter. Environmental Science and Pollution Research, 22, 546-554. https://doi.org/10.1007/s11356-014-3393-7
[87]
Bai, Y., Shi, Q., Wen, D., Li, Z., Jefferson, W.A., Feng, C., et al. (2012) Bacterial Communities in the Sediments of Dianchi Lake, a Partitioned Eutrophic Waterbody in China. PLoS ONE, 7, e37796. https://doi.org/10.1371/journal.pone.0037796
[88]
Fierer, N. and Jackson, R.B. (2006) The Diversity and Biogeography of Soil Bacterial Communities. PNAS, 103, 626-631. https://doi.org/10.1073/pnas.0507535103
[89]
Sandaa, R.A., Enger, O. and Torsvik, V. (1999) Abundance and Diversity of Archaea in Heavy-Metal-Contaminated Soils. Applied and Environmental Microbiology, 65, 3293-3297.
[90]
Li, P., Jiang, D., Li, B., Dai, X., Wang, Y., Jiang, Z., et al. (2014) Comparative Survey of Bacterial and Archaeal Communities in High Arsenic Shallow Aquifers Using 454 Pyrosequencing and Traditional Methods. Ecotoxicology, 23, 1878-1889. https://doi.org/10.1007/s10646-014-1316-5