This article presents all steps between the advanced design and the production of CMOS compatible thermoelectric effect infrared sensors dedicated to smart home applications. It will start by making a comparison between thermopile, bolometer and pyroelectric technologies. Although sensitivity performances available with bolometers appear to be better at first sight, it is found that thermopiles have non-negligible advantages that make them more suitable for this application field. Then the different steps necessary for the design will be described, starting from the thermoelectric model of the sensor (temperature gradient, electrical sensitivity, etc.) and considering all steps up to technological manufacturing in a clean room. The results obtained on the structures produced on a specific computer-controlled measurement bench (temperature regulation with an onboard preamplification card) will be presented. Finally, the results prove that the square structures have better performances (S = 82 V/W and NETD = 208 mK).
References
[1]
Farhad, F., Ehsan, J. and Seyed Jalil, Y. (2016) Fabrication and Characterization of Fast Response Pyroelectric Sensors Based on Fe-Doped PZT Thin Films. Journal of Materials Science-Materials in Electronics, 27, 6578-6585.
https://doi.org/10.1007/s10854-016-4603-5
[2]
Cao, L.-M., Zhang, Y.-Z., Sun, S.-J., Guo, H. and Zhang, Z. (2008) Structure Design and Test of MEMS Thermocouple Infrared Detector. Microsystem Technologies Micro and Nanosystems Information Storage and Processing Systems, 24, 2463-2471.
[3]
Boutchich, M., Ziouche, K., Ait-Hammouda Yala, M., Godts, P. and Leclercq, D. (2005) Package-Free Infrared Micro Sensor Using Polysilicon Thermopile. Sensors and Actuators A, 121, 52-58. https://doi.org/10.1016/j.sna.2005.01.016
[4]
Wang, H., Yi, X. and Chen, S. (2006) Low Temperature Fabrication of Vanadium Oxide Films for Uncooled Bolometric Detectors. Infrared Physics & Technology, 47, 273-277. https://doi.org/10.1016/j.infrared.2005.04.001
[5]
Lim, S., Choi, J., Horowitz, R. and Majumdar, A. (2005) Design and Fabrication of a Novel Bimorph Micro-Optomechanical Sensor. Journal of Microelectromechanical Systems, 14, 683-690. https://doi.org/10.1109/JMEMS.2005.845446
[6]
Xu, D.H., Wang, Y.L., Xiong, B. and Li, T. (2017) MEMS-Based Thermoelectric Infrared Sensors: A Review. Frontiers of Mechanical Engineering, 12, 557-566.
https://doi.org/10.1007/s11465-017-0441-2
[7]
Li, Y., Zhou, H., Li, T., Wang, Y., Liu, Y. and Wang, Y. (2010) CMOS-Compatible 8 × 2 Thermopile Array. Sensors and Actuators A, 161, 120-126.
https://doi.org/10.1016/j.sna.2010.04.026
[8]
Jan, P., Roman, P., Vojtech, S., et al. (2017) Self-Compensating Method for Bolometer-Based IR Focal Plane Arrays. Sensors and Actuators A, 265, 40-46.
https://doi.org/10.1016/j.sna.2017.08.025
[9]
Qian, X., Xu, Y.P. and Karunasiri, G. (2004) Self-Heating Cancellation Circuits for Microbolometer. Sensors and Actuators, A111, 196-202.
https://doi.org/10.1016/j.sna.2003.10.035
[10]
Premachandran, C.S., Chong, S.C., Chai, T.C. and Iyer, M. (2004) Vacuum Packaging Development and Testing for an Uncooled IR Bolometer Device. 54th Electronic Components and Technology Conference, Las Vegas, NV, 4 June 2004, 951-955.
[11]
Fisette, B., Tremblay, M., Oulachgaret, H., et al. (2017) Novel Vacuum Packaged 384 x 288 Broadband Bolometer FPA with Enhanced Absorption in the 3-14 mu m Wavelength Range. Conference on Infrared Technology and Applications, Anaheim, February 2017, 101771R-10177-15.
[12]
Socher, E., Bochobza-Degani, O. and Nemirovsky, Y. (2001) A Novel Spiral CMOS Compatible Micromachined Thermoelectric IR Microsensor. Journal of Micromechanics and Microengineering, 11, 574-576.
https://doi.org/10.1088/0960-1317/11/5/320
[13]
Hsun, C. and Cheng, K. (1999) Optimization Criteria of CMOS Compatible Thermopile Sensors. Proceedings of SPIE, 8 October 1999, 116-126.
[14]
Kou, S. and Akai, H. (2018) First-Principles Calculation of Transition-Metal Seebeck Coefficients. Solid State Communications, 276, 1-4.
https://doi.org/10.1016/j.ssc.2018.02.018
[15]
Völklein, F. and Baltes, H. (1992) Thermoelectric Properties of Polysilicon Films Doped with Phosphorus and Boron. Sensors and Materials, 3, 325-334.
[16]
Escriba, C., Campo, E., Estève, D. and Fourniols, J.Y. (2005) Complete Analytical Modeling and Analysis of Micromachined Thermoelectric Uncooled IR Sensors. Sensors and Actuators A, 120, 267-276. https://doi.org/10.1016/j.sna.2004.11.027
[17]
Elbel, T., Lenggenhager, R. and Baltes, H. (1992) Model of Thermoelectric Radiation Sensors Made by CMOS and Micromachining. Sensors and Actuators A, 35, 101-106. https://doi.org/10.1016/0924-4247(92)80147-U
[18]
Volklein, F. and Baltes, H. (1993) Optimization Tool for the Performance Parameters of Thermoelectric Microsensors. Sensors and Actuators A, 36, 65-71.
https://doi.org/10.1016/0924-4247(93)80142-4
[19]
Dillner, U. (1994) Thermal Modeling of Multilayer Membranes for Sensor Applications. Sensors and Actuators A, 41, 260-267.
https://doi.org/10.1016/0924-4247(94)80121-5
[20]
Xu, D., Xiong, B. and Wang, Y. (2010) Modeling of Front-Etched Micromachined Thermopile IR Detector by CMOS Technology. Journal of Microelectromechanical Systems, 19, 1331-1340.
[21]
Gaiseanu, F., Tsoukalas, D., Esteve, J., Postolache, C., Goustouridis, D. and Tsoi, E. (1997) Chemical Etching Control during the Self-Limitation Process by Boron Diffusion in Silicon: Analytical Results. International Semiconductor Conference 20th Edition, Sinaia, 7-11 October 1997, 247-250.
[22]
Rossi, C., Scheid, E. and Estève, D. (1997) Theoretical and Experimental Study of Silicon Micro Machined Micro Heater with Dielectric Stacked Membranes. Sensors and Actuators A, 63, 183-189. https://doi.org/10.1016/S0924-4247(97)80503-1
[23]
Temple Boyer, P., Rossi, C., Saint Etienne, E. and Scheid, E. (1998) Residual Stress in Low Pressure Chemical Vaport Deposition SiNx Films Deposited from Silane and Ammonia. Journal of Vacuum Science & Technology, 16, 2003-2337.
https://doi.org/10.1116/1.581302
[24]
Rossi, C., Temple Boyer, P. and Estève, D. (1998) Realization and Performance of Thin SiO2/SiNx Membrane for Microheater Applications. Sensors and Actuators A, 64, 241-245. https://doi.org/10.1016/S0924-4247(97)01627-0
[25]
Iosub, R., Moldovan, C. and Modreanu, M. (2002) Silicon Membranes Fabrication by Wet Anisotropic Etching. Sensors and Actuators A, 99, 104-111.
https://doi.org/10.1016/S0924-4247(01)00906-2
[26]
Bitter, R., Mohiuddin, T. and Nawrocki, M.R. (2006) LabVIEW: Advanced Programming Techniques. CRC Press, Boca Raton, 499.
[27]
Kusuda, Y. (2015) A 60 V Auto-Zero and Chopper Operational Amplifier with 800 kHz Interleaved Clocks and Input Bias Current Trimming. Journal of Solid State Circuits, 50, 2804-2813. https://doi.org/10.1109/JSSC.2015.2456891
[28]
Souliotis, G., Plessas, F. and Vlassis, S. (2018) A High Accuracy Voltage Reference Generator. Microelectronics Journal, 75, 61-67.
[29]
Chacon, J., Vargas, H., Farias, G., et al. (2015) EJS, JIL Server, and LabVIEW: Architecture for Rapid Development of Remote Labs. IEEE Transactions on Learning Technologies, 8, 393-401. https://doi.org/10.1109/TLT.2015.2389245
[30]
Gaussorgues, G. (1999) La Thermographie Infrarouge: Principes, Technologies, Applications. Tech. & Doc./Lavoisier.
[31]
Shen, C.-H. and Wang, B.-W. (2004) A High Performance CMOS Compatible Thermopile Based on Noise Added Mechanism. Sensors, Vienna, 24-27 October 2004, 611-614.
[32]
Liu, Y., Shen, D. and Zhu, Z. (2002) The Design of Adding Heat Reflective Emitter Coating on the Cold Region of Infrared Thermopiles. 21st International Conference on Thermoelectrics, Long Beach, 29 August 2002, Vol. 21, 458-462.
[33]
Schaufelbühl, A., et al. (2001) Uncooled Low-Cost Thermal Infrared Based on Micromachined CMOS Integrated Sensor Array. Journal of Micromechanics and Microengineering, 10, 503-510.
[34]
Akin, T., Olgun, Z., Akar, O. and Kulah, H. (1998) An Integrated Thermopile Structure with High Responsivity Using Any Standard CMOS Process. Sensors and Actuators A, 66, 218-224. https://doi.org/10.1016/S0924-4247(98)00038-7
[35]
Pajani, D. (1989) Mesure par thermographie infrarouge. ADD Editeur.