Experimental
scenario of the world being successful in planting water molecule at binary
level in fullerene C70 is of utmost importance to pursue the theoretical
properties of predictive triple water molecules and poly water molecules in
Vander Waals confined space like fullerenes. Here, we present a paper in these
lines of exploration of embedding triple water molecules in a Carbon confined
space through the studies of behavior of three water molecules in Fullerene C60by ab-initio methods. This heterogeneous
system manifests cyclic hydrogen bonds which may be working with flipping
actions. The unusual structural property of water trimers is reported. There exists a dipole moment of 0.9±0.1Debye
which indicates the probable semiconductor properties.
References
[1]
Kurotabi, K. and Murata, Y. (2011) A Single Molecule of Water Encapsulated in Fullerene C60. Science, 333, 613. https://doi.org/10.1126/science.1206376
[2]
Xu, B.X. and Chen, X. (2013) Electrical-Driven Transport of Endohedral Fullerene Encapsulating a Single Water Molecule. Physical Review Letters, 110, Article ID: 156103. https://doi.org/10.1103/PhysRevLett.110.156103
[3]
Zhang, R., Murata, M., Aharen, T., Wakamiya, A., Shimoaka, T., Hasegawa, T. and Murata, Y. (2016) Synthesis of a Distinct Water Dimer inside Fullerene C70. Nature Chemistry, 8, 435-441. https://doi.org/10.1038/nchem.2464
[4]
Hadlington, S. (2016) Chemistry World 7th March.
[5]
Choi, J.I., Snow, S.D., Kim, J.H., Janq, S.S. (2015) Interaction of C60 with Water: First-Principles Modeling and Environmental Implications. Environmental Science & Technology, 49, 1529-1536. https://doi.org/10.1021/es504614u
[6]
Meier, B., Mamone, S. and Levitt, M.H. (2015) Electrical Detection of Ortho-Paraconversion in Fullerene-Encapsulated Water. Nature Communications, 6, 8112. https://doi.org/10.1038/ncomms9112
[7]
Granovsky, A.A. (2014) Firefly Version 8.1.1.
http://classic.chem.msu.su/gran/firefly/index.html
[8]
Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jenson, J.H., Koseky, S., Matsunaja, N., Nguyen, K.A., Su, S., Wimdus, T.L., Dupvis, M. and Montgomery, J.A. (1993) General Atomic and Molecular Electronic Structure System. Journal of Computational Chemistry, 14, 1347-1363.
https://doi.org/10.1002/jcc.540141112
[9]
Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E. and Hutchison, G.R. (2012) Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. Journal of Cheminformatics, 4, 17.
https://doi.org/10.1186/1758-2946-4-17
[10]
Xantheas, S.S. and Dunning Jr., T.H. (1993) The Structure of the Water Trimer from Ab Initio Calculations. The Journal of Chemical Physics, 98, 8037.
https://doi.org/10.1063/1.464558
[11]
Beduz, C., Carravetta, M., Chen, J.Y.C., Concistre, M., Denning, M., Frunzi, M., Horsewill, A.J., Johannessen, O.G., Lawler, R., Lei, X., Levitt, M.H., Li, Y., Mamone, S., Murata, Y., Nagel, U., Nishida, T., Olliver, J., Rols, S., Room, T., Sarkar, R., Turro, N.J. and Yang, Y. (2012) Quantum Rotation of Ortho and Para-Water Encapsulated in a Fullerene Cage. PNAS, 109, 12894-12898.
https://doi.org/10.1073/pnas.1210790109
[12]
Sathyan, N., Santhanam, V. and Sobhanadri, J. (1995) Ab Initio Calculations on Some Binary Systems Involving Hydrogen Bonds. Journal of Molecular Structure: THEOCHEM, 333, 179-189. https://doi.org/10.1016/0166-1280(94)03931-A
[13]
Sathyan, N., Santhanam, V., Madhurima, V. and Sobhanadri, J. (1995) Conformational Study on the Binary Mixture Acetone-Methanol Involving H-Bonding. Journal of Molecular Structure: THEOCHEM, 342, 187-192.
https://doi.org/10.1016/0166-1280(95)90115-9
[14]
Madhurima, V., Sathyan, N., Murthy, V.R.K. and Sobhanadri, J. (1998) Dielectric and Conformational Studies of Hydrogen Bonded Acetone and Acetonitrile System Spectrochimica Acta Part A, 54, 299-304.
https://doi.org/10.1016/S1386-1425(97)00235-7
[15]
Sathyan, N., Santhanam, V. and Sobhanadri, J. (1996) Conformational Analysis of Chloromethylenimine and Its Hydrogen-Bonded Dimers with Water from the Study of Nuclear Quadrupole Interactions. Zeitschrift für Naturforschung A, 51, 534-536.
[16]
Sathyan, N., Johns, J. and Gopalakrishnan, T. (2016) Quest for Computation-Solving Quantum Mechanical Calculation on Molecules. International Journal of Advanced Networking & Applications (IJANA), 128, 577-579.
[17]
Isaacs, E.D., Shukla, A., Platzman, P.M., Hamann, D.R., Barbiellini, B. and Tulk, C.A. (2000) Compton Scattering Evidence for Covalency of the Hydrogen Bond in Ice. Journal of Physics and Chemistry of Solids, 61, 403-406.
https://doi.org/10.1016/S0022-3697(99)00325-X
[18]
Hasted, J.B. (1972) Liquid Water: Dielectric Properties. In: Franks, F., Ed., Water, A Comprehensive Treatment, Vol. 1, Plenum Press, New York, 255-309.
[19]
Ichikawa, K., Kameda, Y., Yamaguchi, T., Wakita, H. and Misawa, M. (1991) Neutron-Diffraction Investigation of the Intramolecular Structure of a Water Molecule in the Liquid Phase at High Temperatures. Molecular Physics, 73, 79-86.
https://doi.org/10.1080/00268979100101071
[20]
Humphrey, W., Dalke, A. and Schulten, K. (1996) VMD: Visual Molecular Dynamics. Journal of Molecular Graphics, 14, 33-38.
https://doi.org/10.1016/0263-7855(96)00018-5
[21]
Zhu, G.-Z., Liu, Y., Hashikawa, Y., Zhang, Q.-F., Murata, Y. and Ang, L.-S. (2018) Probing the Interaction between the Encapsulated Water Molecule and the Fullerene Cages in H2O@C60- and H2O@C59N-. Chemical Science, 9, 5666-5671.