Certain distributions do not have a closed-form density, but it is simple
to draw samples from them. For such distributions, simulated minimum Hellinger
distance (SMHD) estimation appears to be useful. Since the method is
distance-based, it happens to be naturally robust. This paper is a follow-up to
a previous paper where the SMHD estimators were only shown to be consistent;
this paper establishes their asymptotic normality. For any parametric family of
distributions for which all positive integer moments exist, asymptotic
properties for the SMHD method indicate that the variance of the SMHD
estimators attains the lower bound for simulation-based estimators, which is
based on the inverse of the Fisher information matrix, adjusted by a constant
that reflects the loss of efficiency due to simulations. All these features
suggest that the SMHD method is applicable in many fields such as finance or
actuarial science where we often encounter distributions without closed-form
density.
References
[1]
Luong, A. and Bilodeau, C. (2017) Simulated Minimum Hellinger Distance Estimation for Some Continuous Financial and Actuarial Models. Open Journal of Statistics, 7, 743-759. https://doi.org/10.4236/ojs.2017.74052
[2]
Tamura, R.N. and Boos, D.D. (1986) Minimum Hellinger Distance Estimation for Multivariate Location and Covariance. Journal of the American Statistical Association, 81, 223-229. https://doi.org/10.1080/01621459.1986.10478264
[3]
Beran, R. (1977) Minimum Hellinger Distance Estimates for Parametric Models. The Annals of Statistics, 5, 445-463. https://doi.org/10.1214/aos/1176343842
[4]
Klugman, S.A., Panjer, H.H. and Willmot, G.E. (2012) Loss Models: From Data to Decisions. 4th Edition, Wiley, Hoboken.
[5]
Luong, A. (2016) Cramér-Von Mises Distance Estimation for Some Positive Infinitely Divisible Parametric Families with Actuarial Applications. Scandinavian Actuarial Journal, 2016, 530-549. https://doi.org/10.1080/03461238.2014.977817
[6]
Schoutens, W. (2003) Lévy Processes in Finance: Pricing Financial Derivatives. Wiley, New York. https://doi.org/10.1002/0470870230
[7]
Grigoletto, M. and Provasi, C. (2008) Simulation and Estimation of the Meixner Distribution. Communications in Statistics—Simulation and Computation, 38, 58-77. https://doi.org/10.1080/03610910802395679
[8]
Newey, W.K. and McFadden, D. (1994) Large Sample Estimation and Hypothesis Testing. In: Engle, R.F. and McFadden, D.L., Eds., Handbook of Econometrics, Volume 4, North Holland, Amsterdam, 2111-2245.
[9]
Luong, A., Bilodeau, C. and Blier-Wong, C. (2018) Simulated Minimum Hellinger Distance Inference Methods for Count Data. Open Journal of Statistics, 8, 187-219.
https://doi.org/10.4236/ojs.2018.81012
[10]
Pakes, A. and Pollard, D. (1989) Simulation and the Asymptotics of Optimization Estimators. Econometrica, 57, 1027-1057. https://doi.org/10.2307/1913622
[11]
Smith Jr., A.A. (1993) Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions. Journal of Applied Econometrics, 8, S63-S84.
https://doi.org/10.1002/jae.3950080506
[12]
Davidson, K.R. and Donsig, A.P. (2010) Real Analysis and Applications: Theory in Practice. Springer, New York. https://doi.org/10.1007/978-0-387-98098-0
[13]
Rudin, W. (1976) Principles of Mathematical Analysis. 3rd Edition, McGraw-Hill, New York.
[14]
Gusak, D., Kukush, A., Kulik, A., Mishura, Y. and Pilipenko, A. (2010) Theory of Stochastic Processes: with Applications to Financial Mathematics and Risk Theory. Springer, New York. https://doi.org/10.1007/978-0-387-87862-1
[15]
Keener, R.W. (2010) Theoretical Statistics: Topics for a Core Course. Springer, New York. https://doi.org/10.1007/978-0-387-93839-4
[16]
Pollard, D. (1985) New Ways to Prove Central Limit Theorems. Econometric Theory, 1, 295-313. https://doi.org/10.1017/S0266466600011233
[17]
Donoho, D.L. and Liu, R.C. (1988) The “Automatic” Robustness of Minimum Distance Functionals. The Annals of Statistics, 16, 552-586.
https://doi.org/10.1214/aos/1176350820
[18]
Lindsay, B.G. (1994) Efficiency versus Robustness: The Case for Minimum Hellinger Distance and Related Methods. The Annals of Statistics, 22, 1081-1114.
https://doi.org/10.1214/aos/1176325512