全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The complexity of retina operators

DOI: 10.1155/s1110757x02111107

Full-Text   Cite this paper   Add to My Lib

Abstract:

An artificial retina is a plane circuit, consisting of a matrix of photocaptors; each has its own memory, consisting in a small number of cells (3 to 5), arranged in parallel planes. The treatment consists in logical operations between planes, plus translations of any plane: they are called “elementary operations” (EO). A retina operator (RO) is a transformation of the image, defined by a specific representation of a Boolean function of n variables (n is the number of neighboring cells taken into account). What is the best way to represent an RO by means of EO, considering the strong limitation of memory? For most retina operators, the complexity (i.e., the number of EO needed) is exponential, no matter what representation is used, but, for specific classes, threshold functions and more generally symmetric functions, we obtain a result several orders of magnitude better than previously known ones. It uses a new representation, called “Block Addition of Variables.” For instance, the threshold function T 25,12 (find if at least 12 pixels are at 1 in a square of 5×5) required 62 403 599 EO to be performed. With our method, it requires only 38 084 operations, using three memory cells.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133