The quantum gravity problem that the notion of a quantum state, representing the structure of space-time at some instant, and the notion of the evolution of the state, does not get traction, since there are no real “instants”, is avoided by having initial octonionic geometry embedded in a larger, nonlinear (semi-classical) embedding structure. We detail some of what the quantum HUP is, in terms of deterministic 5-dimensional geometry and show that the projection of 5 dimensions into four is when the octonionic structure kicks in as an emergent gravity phenomenon. The example of such is to consider what would happen if there was an aftermath to a presumed initial causal discontinuous structure, after math being the generation of millions of Planck mass black holes, which would in themselves generate emergent gravity.
References
[1]
Frampton, P. and Baum, L. (2007) Turnaround in Cyclic Cosmology. Physical Review Letters, 98, Article ID: 071301.
[2]
Dowker, H.F. (2005) Causal Sets and the Deep Structure of Spacetime. In: Ashtekar, A., Ed., 100 Years of Relativity Space-Time Structure: Einstein and Beyond, World Press Scientific, Singapore. https://doi.org/10.1142/9789812700988_0016
[3]
Park, D.K., Kim, H. and Tamarayan, S. (2002) Nonvanishing Cosmological Constant of Flat Universe in Brane World Scenarios. Physics Letters B, 535, 5-10. https://doi.org/10.1016/S0370-2693(02)01729-X
[4]
Beckwith, A.W. (2008) Symmetries in Evolving Space-Time and Their Connection to High-Frequency Gravity Wave Production. AIP Conference Proceedings, 969, 1018-1026. https://doi.org/10.1063/1.2844938
[5]
Barvinsky, A., Kamenschick, A. and Yu, A. (2006) Thermodynamics from Nothing: Limiting the Cosmological Constant Landscape. Physical Review D, 74, Article ID: 121502, Rapid Communications. https://doi.org/10.1103/PhysRevD.74.121502
[6]
Beckwith, A. (2016) Gedanken Experiment for Refining the Unruh Metric Tensor Uncertainty Principle via Schwartz Shield Geometry and Planckian Space-Time with Initial Nonzero Entropy and Applying the Riemannian-Penrose Inequality and Initial Kinetic Energy for a Lower Bound to Graviton Mass (Massive Gravity). Journal of High Energy Physics, Gravitation and Cosmology, 2, 106-124. https://doi.org/10.4236/jhepgc.2016.21012
[7]
Unruh, W.G. (1986) Why Study Quantum Theory? Canadian Journal of Physics, 64, 128-130. https://doi.org/10.1139/p86-019
[8]
Unruh, W.G. (1986) Erratum: Why Study Quantum Gravity? Canadian Journal of Physics, 64, 128. https://doi.org/10.1139/p86-019
[9]
Kolb, E., Pi, S. and Raby, S. (1984) Phase Transitions in Super Symmetric Grand Unified Models. In: Fang, L. and Ruffini, R., Eds., Cosmology in the Early Universe, World Press Scientific, Pte. Ltd. Co., Singapore, 45-70.
[10]
Giovannini, M. (2008) A Primer on the Physics of the Cosmic Microwave Background. World Press Scientific, Hackensack, New Jersey. https://doi.org/10.1142/6730
[11]
Viatcheslav, M. (2005) Physical Foundations of Cosmology. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511790553
[12]
Lloyd, S. (2002) Computational, Capacity of the Universe. Physical Review Letters, 88, Article ID: 237901. https://arxiv.org/abs/quant-ph/0110141 https://doi.org/10.1103/PhysRevLett.88.237901
[13]
Wesson, P. (2006) 5-Dimensional Physics: Classical and Quantum Consequences of Kaluza Klein Cosmology. World Scientific Publishing Company, Singapore.
[14]
Kaluza, T. (1921) Zum Unitätsproblem in der Physik. Sitzungsber. Preuss. Akad. Wiss., Berlin, 966-972. https://archive.org/details/sitzungsberichte1921preussi
[15]
Klein, O. (1926) Quantentheorie und fünfdimensionale Relativitätstheorie. Zeitschrift für Physik A, 37, 895-906. https://doi.org/10.1007/BF01397481
[16]
Wesson, P.S. (1999) Space-Time-Matter, Modern Kaluza-Klein Theory. World Scientific, Singapore. https://doi.org/10.1142/3889
[17]
Klein, O. {1931) Zur quantenmechanischen Begründung des zweiten Hauptsatzes der Wärmelehre. Zeitschrift für Physik, 72, 767-775.
[18]
Beckwith, A.W. (1927) History Lessons from the 5th Solvay Meeting 1927. http://vixra.org/abs/1708.0399
[19]
Shankar, R. (1994) Principles of Quantum Mechanics. 2nd Edition, Springer Verlag, Heidelberg. https://doi.org/10.1007/978-1-4757-0576-8
[20]
Crowell, L. (2005) Quantum Fluctuations of Spacetime. World Scientific Series in Contemporary Chemical Physics, Volume 25, World Scientific Publishing Company, Singapore.
[21]
Wilson, R. (2008) Octonions. http://www.maths.qmul.ac.uk/~raw/talks_files/octonions.pdf
[22]
Dixon, G.M. (1994) Division Algebras: Octonions Quaternions Complex Numbers and the Algebraic Design of Physics. Kluwer Academic Publishers, London. https://doi.org/10.1007/978-1-4757-2315-1
[23]
Clarkson, C. and Seahra, S. (2007) A Gravitational Wave Window on Extra Dimensions. Classical and Quantum Gravity, 24, F33-F40. https://doi.org/10.1088/0264-9381/24/9/F01
[24]
Abbott, B.P., et al. (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, Article ID: 061102. https://physics.aps.org/featured-article-pdf/10.1103/PhysRevLett.116.061102
[25]
Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282. https://doi.org/10.1142/S0218271809015904
[26]
Abbot, B.P., et al. (2016) GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 116, Article ID: 241103. https://doi.org/10.1103/PhysRevLett.116.241103
[27]
Kiefer, C., Polarski, D. and Starobinsky, A.A. (2000) Entropy of Gravitons Produced in the Early Universe. Physical Review D, 62, Article ID: 043518.
[28]
t’Hooft, G. (1999) Quantum Mechanics as a Dissipative Deterministic System. http://arxiv.org/PS_cache/gr-qc/pdf/9903/9903084v3.pdf
[29]
Schrodinger, E. (1952) Are There Quantum Jumps. The British Journal for the Philosophy of Science, 4, 109-123, 233-247.
[30]
Malomed, B. (2005) Nonlinear Schrödinger Equations. In: Scott, A., Ed., Encyclopedia of Nonlinear Science, Routledge, New York, 639-643.
[31]
Pashby, T. (2005) Time and the Foundations of Quantum Mechanics. http://philsci-archive.pitt.edu/10666/1/Pashby_2014_Time_Foundations_QM.pdf