The red snapper Lutjanus campechanus (Poey, 1860) has a high commercial
value that sustains an important fishery in Mexico. In this study, the patterns
in morphological variations from early juvenile to adult stages were assessed
by geometric methods (GM) in 194 organisms. Changes in shape were more
evident and rapid in the early juvenile stage and decreased during adulthood.
The principal components analysis of shape (Relative Warp Analysis, or
RWA) identified size and body depth as the main sources of variance associated
to both juvenile and adult organisms. The outline of the head and the tail
showed the most noticeable differences following the ontogenic pathway
visualized by thin-plate splines indicating that the ontogenetic pathway of the
upper half and the lower half of the dorsal head profile (DHP) are in relatively
opposite directions than those from the tail that bends ventrally. The
Two-Block Partial Least Square analysis (2B-PLS) and their CR coefficients
showed that the two modules had a moderate linear trend (p = 0.001). Although
the blocks have morphological changes at different rates, there is a
moderate synchrony in growth by modules. This study is the first to report
the use of geometrical morphometry in L. campechanus in Mexico.
References
[1]
Walker, J.A. (2010) An Integrative Model of Evolutionary Covariance: A Symposium on Body Shape in Fishes. Integrative and Comparative Biology, 50, 1051-1056.
https://doi.org/10.1093/icb/icq014
[2]
Loy, A., Mariani, L., Bertelletti, M. and Tunesi, L. (1998) Visualizing Allometry: Geometric Morphometrics in the Study of Shape Changes in the Early Stages of the Two-Banded Sea Bream, Diplodus vulgaris (Perciformes, Sparidae). Journal of Morphology, 237, 137-146.
https://doi.org/10.1002/(SICI)1097-4687(199808)237:2<137::AID-JMOR5>3.0.CO;2-Z
Zelditch, M.L., Swiderski, D.L., Sheets, H.D. and Fink, W.L. (2004) Geometric Morphometrics for Biologists. 2nd Edition, Elsevier Academic Press, New York, USA.
[5]
Klingenberg, C.P. (1996) Multivariate Allometry. In: Marcus, L., Corti, M., Loy, A., Naylor, G.P. and Slice, D., Eds., Advances in Morphometrics, Springer, US, 23-49.
https://doi.org/10.1007/978-1-4757-9083-2_3
[6]
Toro-Ibacache, M.V., Soto, G.M. and Galdames, I.S. (2010) Morfometría geométrica y el estudio de las formas biológicas: De la morfología descriptiva a la morfología cuantitativa. International Journal of Morphology, 28, 977-990.
https://doi.org/10.4067/S0717-95022010000400001
[7]
Kendall, D.G. (1977) The Diffusion of Shape. Advances in Applied Probability, 9, 428-430. https://doi.org/10.2307/1426091
[8]
Viscosi, V. and Cardini, A. (2011) Leaf Morphology, Taxonomy and Geometric Morphometrics: A Simplified Protocol for Beginners. PLoS ONE, 6, e25630.
https://doi.org/10.1371/journal.pone.0025630
[9]
Roth, V.L. and Mercer, J.M. (2000) Morphometrics in Development and Evolution. Integrative and Comparative Biology, 40, 801-810.
https://doi.org/10.1093/icb/40.5.801
[10]
Larson, P.M. (2005) Ontogeny, Phylogeny, and Morphology in Anuran Larvae: Morphometric Analysis of Cranial Development and Evolution in Rana Tadpoles (Anura: Ranidae). Journal of Morphology, 264, 34-52.
https://doi.org/10.1002/jmor.10313
[11]
Gayon, J. (2000) History of the Concept of Allometry. Integrative and Comparative Biology, 40, 748-758. https://doi.org/10.1093/icb/40.5.748
[12]
Cheverud, J.M. (1970) Relationships among Ontogenetic, Static, and Evolutionary Allometry. American Journal of Physical Anthropology, 59, 139-149.
https://doi.org/10.1002/ajpa.1330590204
[13]
Wagner, G.P. (1996) Homologues, Natural Kinds and the Evolution of Modularity. Integrative and Comparative Biology, 36, 36-43. https://doi.org/10.1093/icb/36.1.36
[14]
Klingenberg, C.P. (2002) Morphometrics and the Role of the Phenotype in Studies of the Evolution of Developmental Mechanisms. Gene, 287, 3-10.
https://doi.org/10.1016/S0378-1119(01)00867-8
[15]
Klingenberg, C.P., Badyaev, A.V., Sowry, S.M. and Beckwith, N.J. (2001) Inferring Developmental Modularity from Morphological Integration: Analysis of Individual Variation and Asymmetry in Bumblebee Wings. The American Naturalist, 157, 11-23. https://doi.org/10.1086/317002
[16]
Klingenberg, C.P. (2008) Morphological Integration and Developmental Modularity. Annual Review of Ecology, Evolution, and Systematics, 39, 115-132.
https://doi.org/10.1146/annurev.ecolsys.37.091305.110054
[17]
Geladi, P. and Kowalski, B.R. (1986) Partial Least-Squares Regression: A Tutorial. Analytica Chimica Acta, 185, 1-17. https://doi.org/10.1016/0003-2670(86)80028-9
[18]
Rohlf, F.J. and Corti, M. (2000) Use of Two-Block Partial Least-Squares to Study Covariation in Shape. Systematic Biology, 49, 740-753.
https://doi.org/10.1080/106351500750049806
[19]
Allen, G.R. (1985) FAO Species Catalogue, vol. 6. Snappers of the World: An Annotated and Illustrated Catalogue of Lutjanidae Species Known to Date. FAO Fisheries Synopsis No. 125, 208.
[20]
McEachran, J.D. and Felhhelm, J.D. (1998) Fishes of the Gulf of Mexico. Volume 1, University of Texas Press, Austin, Texas, 112 p.
[21]
Brulé, T., Colás-Marrufo, T., Pérez-Díaz, E. and Sámano-Zapata, J.C. (2010) Red Snapper Reproductive Biology in the Southern Gulf of Mexico. Transactions of the American Fisheries Society, 139, 957-968. https://doi.org/10.1577/T09-125.1
[22]
Anderson, W., Claro, R., Cowan, J., Lindeman, K., Padovani-Ferreira, B. and Rocha, L.A. (2015) Lutjanus campechanus. IUCN Red List Threat Species 2015, e.T194365A115334224.
[23]
Lara-Lara, J., Arenas-Fuentes, V., Bazán-Guzmán, C., Díaz-Casta?eda, V., Escobar-Briones, E., García-Abad, M.C., Gaxiola-Castro, G., Robles-Jarero, G., Sosa-ávalos, R. and Soto-González, L. (2008) Los ecosistemas marinos. Capital natural de México, 135-159.
[24]
Bookstein, F.L. (1991) Morphometric Tools for Landmark Data Geometry and Biology. Cambridge University Press, London.
[25]
Shetts, H. (2003) IMP-Integrated Morphometrics Package. Department of Physics, Canisius College, Buffalo. https://www3.canisius.edu/~sheets/morphsoft
[26]
Rohlf, F.J. (2010) tpsUtil File Utility Program. Version 1.58. Department of Ecology and Evolution, State University of New York, Stony Brook.
http://life.bio.sunysb.edu/morph/
[27]
Rohlf, F.J. (2010) tpsDig File Utility Program. Version 2.16. Department of Ecology and Evolution, State University of New York, Stony Brook.
http://life.bio.sunysb.edu/morph/
[28]
Goodall, C. (1991) Procrustes Methods in the Statistical Analysis of Shape. Journal of the Royal Statistical Society: Series B, 53, 285-339.
[29]
Rohlf, F.J. (1999) Shape Statistics: Procrustes Superimpositions and Tangent Spaces. Journal of Classification, 16, 197-223. https://doi.org/10.1007/s003579900054
[30]
Slice, D.E. (2005) Modern Morphometrics in Physical Anthropology. Kluwer Academic/Plenum Publishers, New York. https://doi.org/10.1007/0-387-27614-9
[31]
Adams, D.C., Rohlf, F.J. and Slice, D.E. (2004) Geometric Morphometrics: Ten Years of Progress Following the “Revolution”. Italian Journal of Zoology, 71, 5-16.
https://doi.org/10.1080/11250000409356545
[32]
Rohlf, F.J. (1993) Relative Warp Analysis and an Example of Its Applications to Mosquito Wings. In: Marcus, L., Bello, E. and García-Valdecasas, A., Eds., Contributions to Morphometrics, Museo Nacional de Ciencias Naturales, Madrid, 131-159.
[33]
Dryden, I.L. and Mardia, K.V. (1998) Statistical Shape Analysis. John Wiley & Sons, Chichester.
[34]
Rohlf, F.J. (2004) tpsSpline File Utility Program. Version 1.20. Department of Ecology and Evolution, State University of New York, Stony Brook.
http://life.bio.sunysb.edu/morph/
[35]
Rohlf, F.J. (2010) tpsRelw File Utility Program. Version 1.49. Department of Ecology and Evolution, State University of New York, Stony Brook.
http://life.bio.sunysb.edu/morph/
[36]
Hassell, E.M.A., Meyers, P.J., Billman, E.J., Rasmussen, J.E. and Belk, M.C. (2012) Ontogeny and Sex Alter the Effect of Predation on Body Shape in a Livebearing Fish: Sexual Dimorphism, Parallelism, and Costs of Reproduction. Ecology and Evolution, 2, 1738-1746. https://doi.org/10.1002/ece3.278
[37]
Rohlf, F.J. (2014) tpsPLS File Utility Program. Version 1.21. Department of Ecology and Evolution, State University of New York, Stony Brook.
http://life.bio.sunysb.edu/morph/
[38]
Bookstein, F.L., Gunz, P., Mitteroecker, P., Prossinger, H., Schaefer, K. and Seidler, H. (2003) Cranial Integration in Homo: Singular Warps Analysis of the Midsagittal Plane in Ontogeny and Evolution. Journal of Human Evolution, 44, 167-187.
https://doi.org/10.1016/S0047-2484(02)00201-4
[39]
Adams, D.C. (2016) Evaluating Modularity in Morphometric Data: Challenges with the RV Coefficient and a New Test Measure. Methods in Ecology and Evolution, 7, 565-572. https://doi.org/10.1111/2041-210X.12511
[40]
Adams, D.C., Collyer, M.L., Kaliontzopoulou, A. and Sherratt, E. (2017) Geomorph: Software for Geometric Morphometric Analyses. R Package Version 3.0.5.
https://cran.r-project.org/package=geomorph
[41]
Sfakiotakis, M., Lane, D.M. and Davies, J.B.C. (1999) Review of Fish Swimming Modes for Aquatic Locomotion. IEEE Journal of Oceanic Engineering, 24, 237-252.
https://doi.org/10.1109/48.757275
[42]
McHenry, M.J. and Lauder, G.V. (2006) Ontogeny of Form and Function: Locomotor Morphology and Drag in Zebrafish (Danio rerio). Journal of Morphology, 267, 1099-1109. https://doi.org/10.1002/jmor.10462
[43]
Case, J.E., Westneat, M.W. and Marshall, C.D. (2008) Feeding Biomechanics of Juvenile Red Snapper (Lutjanus campechanus) from the Northwestern Gulf of Mexico. Journal of Experimental Biology, 211, 3826-3835.
https://doi.org/10.1242/jeb.014464
[44]
Betz, O. (2006) Ecomorphology: Integration of Form, Function, and Ecology in the Analysis of Morphological Structures. Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie, 15, 409-416.
[45]
Robinson, B.W. and Wilson, D.S. (1996) Genetic Variation and Phenotypic Plasticity in a Trophically Polymorphic Population of Pumpkinseed Sunfish (Lepomis gibbosus). Evolutionary Ecology, 10, 631-652. https://doi.org/10.1007/BF01237711
[46]
Moyle, P.B. and Cech, J.J. (2004) Fishes: An Introduction to Ichthyology. 5th Edition, Prentice-Hall, Upper Saddle River.
[47]
Maie, T., Schoenfuss, H.L. and Blob, R.W. (2012) Performance and Scaling of a Novel Locomotor Structure: Adhesive Capacity of Climbing Gobiid Fishes. Journal of Experimental Biology, 215, 3925-3936. https://doi.org/10.1242/jeb.072967
[48]
Mbaru, E.K., Mlewa, C.M. and Kimani, E.N. (2010) Length-Weight Relationship of 39 Selected Reef Fishes in the Kenyan Coastal Artisanal Fishery. Fisheries Research, 106, 567-569. https://doi.org/10.1016/j.fishres.2010.09.012
[49]
Nieto-Navarro, J., Zetina-Rejón, M., Arreguín-Sánchez, F., Arcos-Huitrón, N. and Pe?a-Messina, E. (2010) Length-Weight Relationship of Demersal Fish from the Eastern Coast of the Mouth of the Gulf of California. Journal of Fisheries and Aquatic Science, 5, 494-502. https://doi.org/10.3923/jfas.2010.494.502
[50]
Gómez, G., Guzmán, R. and Marcano, L. (1996) Biological Aspects of the Yellow Eye Snapper (Lutjanusvivanus) (Pisces: Lutjanidae) from Los Hermanos Islands, Eastern Venezuela. In: Arreguín-Sanchez, F., Munro, J., Balgos, M. and Pauly, D., Eds., Biology, Fisheries and Culture of Tropical Groupers and Snappers, ICLARM, 51-58.
[51]
Manickchand-Heileman, S. and Phillip, D. (1996) Reproduction, Age and Growth of the Caribbean Red Snapper (Lutjanuspurpureus) in Waters of Trinidad and Tobago. In: Arreguín-Sanchez, F., Munro, J., Balgos, M. and Pauly, D., Eds., Biology, Fisheries and Culture of Tropical Groupers and Snappers, ICLARM, 137-149.
[52]
Williams, K., Papanikos, N., Phelps, R.P. and Shardo, J.D. (2004) Development, Growth, and Yolk Utilization of Hatchery-Reared Red Snapper Lutjanus campechanus Larvae. Marine Ecology Progress Series, 275, 231-239.
https://doi.org/10.3354/meps275231
[53]
Osse, J.W., Sibbing, F.A. and van den Boogaart, J.G. (1997) Intra-Oral Food Manipulation of Carp and Other Cyprinids: Adaptations and Limitations. Acta Physiologica Scandinavica. Supplementum, 638, 47-57.
[54]
Gisbert, E., Merino, G., Muguet, J., Bush, D., Piedrahita, R. and Conklin, D. (2002) Morphological Development and Allometric Growth Patterns in Hatchery-Reared California Halibut Larvae. Journal of Fish Biology, 61, 1217-1229.
https://doi.org/10.1111/j.1095-8649.2002.tb02466.x
[55]
Drass, D.M., Bootes, K.L., Lyczkowski-Shultz, J., Comyns, B.H., Holt, G.J., Riley, C.M. and Phelps, R.P. (2000) Larval Development of Red Snapper, Lutjanus campechanus, and Comparisons with Co-Occurring Snapper Specie. Fishery Bulletin, 98, 507-527.
[56]
Nelson, R.S. and Manooch, C.S. (1982) Growth and Mortality of Red Snappers in the West-Central Atlantic Ocean and Northern Gulf of Mexico. Transactions of the American Fisheries Society, 111, 465-475.
https://doi.org/10.1577/1548-8659(1982)111<465:GAMORS>2.0.CO;2
[57]
Langerhans, R.B. and Reznick, D. (2010) Ecology and Evolution of Swimming Performance in Fishes: Predicting Evolution with Biomechanics. In: Domenici, P. and Kapoor, B., Eds., Fish Locomotion an Etho-Ecological Perspect, Science Publishers, Enfield, 200-248. https://doi.org/10.1201/b10190-8
[58]
Patterson, William, F., Wilson, C.A. and Shipp, R.L. (2001) Age and Growth of Red Snapper, Lutjanus campechanus, from an Artificial Reef Area off Alabama in the Northern Gulf of Mexico. Fishery Bulletin, 99, 617.
[59]
Gibb, A.C., Swanson, B.O., Wesp, H., Landels, C. and Iu, C. (2006) Development of the Escape Response in Teleost Fishes: Do Ontogenetic Changes Enable Improved Performance? Physiological and Biochemical Zoology, 1, 7-19.
https://doi.org/10.1086/498192
[60]
Hale, M.E. (1996) The Development of Fast-Start Performance in Fishes: Escape Kinematics of the Chinook Salmon (Oncorhynchus tshawytscha). American Zoologist, 36, 695-709. https://doi.org/10.1093/icb/36.6.695
[61]
Fuiman, L.A. and Webb, P.W. (1988) Ontogeny of Routine Swimming Activity and Performance in Zebra Danios (Teleostei: Cyprinidae). Animal Behaviour, 36, 250-261.
https://doi.org/10.1016/S0003-3472(88)80268-9
[62]
Borazjani, I. and Sotiropoulos, F. (2010) On the Role of Form and Kinematics on the Hydrodynamics of Self-Propelled Body/Caudal Fin Swimming. Journal of Experimental Biology, 213, 89-107. https://doi.org/10.1242/jeb.030932
[63]
Langerhans, R.B., Layman, C.A., Shokrollahi, A.M. and DeWitt, T.J. (2004) Predator-Driven Phenotypic Diversification in Gambusia affinis. Evolution, 58, 2305-2318.
https://doi.org/10.1111/j.0014-3820.2004.tb01605.x
[64]
Langerhans, R.B. (2009) Morphology, Performance, Fitness: Functional Insight into a Post-Pleistocene Radiation of Mosquitofish. Biology Letters, 5, 488-491.
https://doi.org/10.1098/rsbl.2009.0179
[65]
Baliga, V.B. and Mehta, R.S. (2016) Ontogenetic Allometry in Shape and Flexibility Underlies Life History Patterns of Labrid Cleaning Behavior. Integrative and Comparative Biology, 56, 416-427. https://doi.org/10.1093/icb/icw028
[66]
Cheverud, J.M. (1982) Phenotypic, Genetic and Environmental Integration in the Cranium. Evolution, 36, 499-512.
https://doi.org/10.1111/j.1558-5646.1982.tb05070.x
[67]
Fischer-Rousseau, L., Cloutier, R. and Zelditch, M.L. (2009) Morphological Integration and Developmental Progress during Fish Ontogeny in Two Contrasting Habitats. Evolution & Development, 11, 740-753.
https://doi.org/10.1111/j.1525-142X.2009.00381.x
[68]
Klingenberg, C.P., Barluenga, M. and Meyer, A. (2003) Body Shape Variation in Cichlid Fishes of the Amphilophus citrinellus Species Complex. Biological Journal of the Linnean Society, 80, 397-408.
https://doi.org/10.1046/j.1095-8312.2003.00246.x
[69]
Fuiman, L.A. (1983) Growth Gradients in Fish Larvae. Journal of Fish Biology, 23, 117-123. https://doi.org/10.1111/j.1095-8649.1983.tb02886.x
[70]
Walker, J.A. (1997) Ecological Morphology of Lacustrine Threespine Stickleback Gasterosteus aculeatus L. (Gasterosteidae) Body Shape. Biological Journal of the Linnean Society, 61, 3-50.
[71]
Domenici, P. (2001) The Scaling of Locomotor Performance in Predator-Prey Encounters: From Fish to Killer Whales. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 131, 169-182.
https://doi.org/10.1016/S1095-6433(01)00465-2
[72]
Antonucci, F., Costa, C., Aguzzi, J. and Cataudella, S. (2009) Ecomorphology of Morpho-Functional Relationships in the Family of Sparidae: A Quantitative Statistic Approach. Journal of Morphology, 270, 843-855.
https://doi.org/10.1002/jmor.10725
[73]
Webb, P.W. (1984) Body Form, Locomotion and Foraging in Aquatic Vertebrates. American Zoologist, 24, 107-120. https://doi.org/10.1093/icb/24.1.107
[74]
Blake, R.W. (2004) Fish Functional Design and Swimming Performance. Journal of Fish Biology, 65, 1193-1222. https://doi.org/10.1111/j.0022-1112.2004.00568.x
[75]
Schroepfer, R.L. and Szedlmayer, S.T. (2006) Estimates of Residence and Site Fidelity for Red Snapper Lutjanus campechanus on Artificial Reefs in the Northeastern Gulf of Mexico. Bulletin of Marine Science, 78, 93-101.