A psychobiological model of the etiopathology of bipolar disorder is proposed. Based on genetic-epigenetic and chronobiological factors a hyperintentional personality structure, if faced with non-feasible intentional programs in the environment, suffers from inner and outer stress. This stress situation leads to imbalances in information processing in glial-neuronal synaptic units, called tripartite synapses. In depression the overexpression of astrocytic receptors and of gap junctions in the astroglial network causes a prolonged information processing which affects the behavior generating systems in the brainstem reticular formation. Because the activation of the behavior generating systems is protracted, they are unable to select an appropriate mode of behavior (e.g. communicating, eating, working, sleeping, etc.) from sensory information in real time. Inversely, in mania astrocytic receptors and gap junctions are underexpressed causing a shortened synaptic information processing with rapid changes in behavior. Switching may represent a coping-attempt with depression by mania and vice versa. Towards a comprehensive model of the pathophysiology of bipolar disorder the role of microglia and their devastating effects on glial-neuronal interactions are outlined. Finally, the testing of the model is discussed.
References
[1]
Clemente, A.S. (2015) Bipolar Disorder Prevalence: A Systematic Review and Meta-Analysis of the Literature. Revista Brasileira de Psiquiatria, 37, 155-161. https://doi.org/10.1590/1516-4446-2012-1693
[2]
Akiskal, H.S. (1995) Mood Disorders: Introduction and Overview. In: Kaplan, H.J. and Sadock, B.J., Eds., Comprehensive Textbook of Psychiatry, Williams and Wilkins, Baltimore, 1067-1079.
[3]
Young, J.W. and Dulcis, D. (2015) Investigating the Mechanism(s) Underlying Switching between States in Bipolar Disorder. European Journal of Pharmacology, 759, 151-162. https://doi.org/10.1016/j.ejphar.2015.03.019
[4]
American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders. 5th Edition, American Psychiatric Association, Washington DC.
[5]
Sigitova, E., Fisar, Z., Hroudová, J., Cikanková, T. and Raboch, J. (2017) Biological Hypotheses and Biomarkers of Bipolar Disorder. Psychiatry and Clinical Neurosciences, 71, 77-103. https://doi.org/10.1111/pcn.12476
[6]
Johnson, S.L., Cuellar, A. and Gershon, A. (2016) The Influence of Trauma, Life Events, and Social Relationships on Bipolar Depression. Psychiatric Clinics of North America, 39, 87-94. https://doi.org/10.1016/j.psc.2015.09.003
[7]
Akiskal, H.S. and McKinney, W.T. (1973) Depressive Disorders: Towards a Unified Hypothesis. Science, 182, 20-29. https://doi.org/10.1126/science.182.4107.20
[8]
Maletic, V. and Raison, C. (2014) Integrated Neurobiology of Bipolar Disorder. Front. Psychiatry, 5, 98. https://doi.org/10.3389/fpsyt.2014.00098
[9]
Hasler, G. (2010) Pathophysiology of Depression: Do We Have Any Solid Evidence of Interest to Clinicians? World Psychiatry, 9, 155-161. https://doi.org/10.1002/j.2051-5545.2010.tb00298.x
[10]
Verkhratsky, A., Rodrigues, J.J. and Steardo, L. (2014) Astrogliopathy: A Central Element of Neuropsychiatric Diseases. Neuroscientist, 20, 576-588. https://doi.org/10.1177/1073858413510208
[11]
Rial, D., Lemos, C., Pinheiro, H., Duarte, J., Goncalves, F.Q., et al. (2015) Depression as a Glial-Based Synaptic Dysfunction. Frontiers in Cellular Neuroscience, 9, 521.
[12]
Perea, G. and Arague, A. (2003) Tripartite Synapses: Bidirectional Communication between Astrocytes and Neurons. Journal of Physiology, 548, 15.
[13]
Halassa, M.M. and Haydon, P.G. (2010) Integrated Brain Circuits: Astrocytic Networks Modulate Neuronal Activity and Behavior. Annual Review of Physiology, 72, 335-355. https://doi.org/10.1146/annurev-physiol-021909-135843
[14]
Mitterauer, B. (2004) Imbalance of Glial-Neuronal Interaction in synapses: a possible Mechanism of the Pathophysiology of Bipolar Disorder. Neuroscientist, 10, 199-206. https://doi.org/10.1177/107385403262248
[15]
Mitterauer, B.J. (2009) Narziss and Echo. Ein psychobiologisches Modell der Depression. Springer, Vienna. https://doi.org/10.1007/978-3-211-99140-4
Mitterauer, B.J. (2015) Balancing and Imbalancing Effects of Astrocytic Receptors in Tripartite Synapses. Common Pathophysiological Model of Mental Disorders and Epilepsy. Medical Hypotheses, 84, 315-320. https://doi.org/10.1016/j.mehy.2015.01.025
[18]
Mitterauer, B.J. (2007) Where and How Could Intentional Programs Be Generated in the Brain? A Hypothetical Model Based on Glial-Neuronal Interactions. BioSystems, 88, 101-112. https://doi.org/10.1016/j.biosystems.2006.04.003
[19]
Arague, A., Parpura, V., Sanzgiri, R.P. and Haydon, P.G. (1999) Tripartite Synapses: Glia, the Unacknowledged Partner. Trends in Neurosciences, 22, 208-215. https://doi.org/10.1016/S0166-2236(98)01349-6
[20]
Mitterauer, B.J. (2006) Pseudo Omnipotence: A Model of the Manic Syndrome. Nova Science Publishers, New York, 161-178.
[21]
Bibring, E. (1953) The Mechanism of Depression. In: Greenacre, P., Ed., Affective Disorders, International Universities Press, New York, 13-48.
[22]
Champagne, F.A. and Mashoodt, R. (2012) Genes in Context: Gene-Environment Interplay and Origins of Individual Differences in Behavior. Current Directions in Psychological Science, 18, 127-131. https://doi.org/10.1111/j.1467-8721.2009.01622.x
[23]
Bagot, R.C. and Meaney, M.J. (2010) Epigenetics and the Biological Basis of Gene x Environment Interactions. Journal of American Academy of Child and Adolescent Psychiatry, 49, 752-771. https://doi.org/10.1016/j.jaac.2010.06.001
[24]
Stuffrein-Roberts, S., Joyce, P.R. and Kennedy, M.A. (2008) Role of Epigenetics in Mental Disorders. The Australian and New Zealand Journal of Psychiatry, 42, 97-107. https://doi.org/10.1080/00048670701787495
[25]
Dalton, V.S., Kolshus, E. and McLaughlin, D.M. (2014) Epigenetics and Depression: Return of the Repressed. Journal of Affective Disorders, 155, 1-12. https://doi.org/10.1016/j.jad.2013.10.028
[26]
Freud, S. (1917) Trauer und Melancholie. In: Fischer, S., Ed., Gesammelte Werke, Bd 11, Frankfurt.
Ransom, B.R. and Giaume, C. (2013) Gap Junctions, Hemichannels. In: Kettenman, H. and Rason, B.R., Eds., Neuroglia, Oxford University Press, New York, 292-305.
[29]
Guenther, G. (1963) Das Bewußtsein der Maschinen. Agis, Krefeld.
[30]
Mitterauer, B.J. (2014) Pathophysiology of Schizophrenia Based on Impaired Glial-Neuronal Interactions. Open Journal of Medical Psychology, 3, 126-140. https://doi.org/10.4236/ojmp.2014.32016
[31]
Mitterauer, B.J. (2011) Downregulation and Upregulation of Glial Connexin May Cause Synaptic Imbalances Responsible for the Pathophysiology of Bipolar Disorder. CNS Neuroscience and Therapeutics, 17, 281-293. https://doi.org/10.1111/j.1755-5949.2010.00178.x
[32]
Quesseveur, G., Portal, B., Basic, J.A., et al. (2015) Attenuated Levels of Hippocampal Connexin 43 and Its Phosphorylation Correlate with Antidepressant- and Anxiolytic-Like Activation in Mice. Frontiers in Cellular Neuroscience, 9, 490.
[33]
Solan, J.L. and Lampe, P.D. (2009) Connexin 43 Phosphorylation: Structural Changes and Biological Effects. Biochemical Journal, 419, 261-272. https://doi.org/10.1042/BJ20082319
[34]
Mayberg, H.S., Brannan, S.K., Tekell, J.L, et al. (2000) Regional Metabolic Effects of Fluoxetine in Major Depression: Serial Changes and Relationship to Clinical Response. Biological Psychiatry, 48, 830-843. https://doi.org/10.1016/S0006-3223(00)01036-2
[35]
Kettenmann, H. and Zorec, R. (2013) Release of Gliotransmitters and Transmitter Receptors in Astrocytes. In: Kettenmann, H. and Ransom, B.R., Eds., Neuroglia, Oxford University Press, New York, 197-211. https://doi.org/10.1093/med/9780199794591.001.0001
[36]
Yu, W., Mechavar, N., Kratic, S., et al. (2012) Upregulation of Astrocytic Alpha 7 Nicotinic Receptors in Alzheimer’s Disease Brain—Possibly Relevant to Amyloid Pathology. Molecular Neurodegeneration, 7, 7. http://www.molecularneurodegeneration.com/content/7/S1/07
[37]
Joshida, Y., Nagai, A., Kobayashi, S. and Kein, S.U. (2006) Upregulation of Protease-Activated Receptor-1 in Astrocytes in Parkinson’s Disease: Astrocyte-Mediated Neuroprotection through Levels of Glutathione Peroxidase. Journal of Neuropathology & Experimental Neurology, 65, 66-77. https://doi.org/10.1097/01.jnen.0000195941.48033.eb
[38]
Borroto-Escuela, D.O. and Fuxe, K. (2017) Diversity and Bias through Dopamine D2R Heteroreceptor Complexes. Current Opinion in Pharmacology, 32, 16-22. https://doi.org/10.1016/j.coph.2016.10.004
[39]
Muner, A. (2017) Mixed States in Bipolar Disorder: Etiology, Pathogenesis and Treatment. Chonnam Medical Journal, 53, 1-13. https://doi.org/10.4068/cmj.2017.53.1.1
[40]
Milior, G., Lecours, C., Samson, L., et al. (2015) Fractalkine Receptor Deficiency Impairs Microglial and Neuronal Responsiveness to Chronic Stress. Brain, Behavior, and Immunity, 55, 114-125.
[41]
Berk, M., Dodd, S., Kauer-Sant’anna, et al. (2007) Dopamine Dysregulation Syndrome: Implications for a Dopamine Hypothesis of Bipolar Disorder. Acta Psychiatrica Scandinavica, No. 434, 41-49. https://doi.org/10.1111/j.1600-0447.2007.01058.x
[42]
Goncales, P. (2009) Behavior Modes, Pathways and Overall Trajectories: Eigenvector and Eigenvalue Analysis of Dynamic Systems. System Dynamics Review, 25, 35-62. https://doi.org/10.1002/sdr.414
[43]
McCulloch, W.S. (1965) Embodiments of Mind. Cambridge University Press, Cambridge.
[44]
Humphries, M.D., Gurney, K. and Prescott, T.J. (2006) The Brainstem Reticular Formation Is a Small-World, Not Scale-Free, Network. Proceedings of the Royal Society B, 273, 503-511. https://doi.org/10.1098/rspb.2005.3354
[45]
Okada, Y., Sasaki, T., Oku, Y., et al. (2012) Preinspiratory Calcium Rise in Putative Pre-Bötzinger Complex Astrocytes. The Journal of Physiology, 590, 4933-4944.
[46]
Marquette, P., Vendier, D., Kodala, A., et al. (2015) An Astrocyte-Dependent Mechanism of Neuronal Rhythmogenesis. Nature Neuroscience, 18, 844-854. https://doi.org/10.1038/nn.4013
[47]
Barbas, H. and Zikopoulos, B. (2007) The Prefrontal Cortex and Flexible Behavior. Neuroscientist, 13, 532-545. https://doi.org/10.1177/1073858407301369
[48]
Mitterauer, B.J. (2015) Model of the Reticular Formation of the Brainstem. Based on Glial-Neuronal Interactions. Cognitive Computation, 7, 64-73. https://doi.org/10.1007/s12559-014-9260-5
[49]
Giaume, C. and Naus, C.C. (2013) Connexins, Gap Junctions, and Glia. WIREs Membrane Transport and Signaling, 2, 133-142.
[50]
Kettenmann, H., Kirchhoff, F. and Verkhratsky, A. (2012) Microglia: New Notes for the Synaptic Stripper. Neuron, 77, 10-18.
[51]
Munkholm, K., Vinberg, M. and Vedel, K.L. (2013) Cytokines in Bipolar Disorder: A Systematic Review and Meta-Analysis. Journal of Affective Disorders, 144, 16-27. https://doi.org/10.1016/j.jad.2012.06.010
[52]
Jakobsson, J., Bjerke, M., Sahebi, S., et al. (2015) Monocyte and Microglial Activation in Patients with Mood-Stabilized Bipolar Disorder. Journal of Psychiatry & Neuroscience, 40, 250-258. https://doi.org/10.1503/jpn.140183
[53]
Gigante, A.D., Young, L.T., Yatham, L.N., et al. (2011) Monophometric Post-Mortem Studies in Bipolar Disorder: Possible Association with Oxidative Stress and Apoptosis. International Journal of Neuropharmacology, 14, 1075-1086.
[54]
Carter, C.J. (2007) Multiple Genes and Factors Associated with Bipolar Disorder Converge on Growth Factor and Stress Activated Kinase Pathways Controlling Translation Initiation: Implications for Oligodendrocyte Viability. Neurochemistry International, 50, 461-490.
[55]
Chen, C.H., Suckling, J., Lennox, B.R., et al. (2011) A Quantitative Meta-Analysis of fMRI Studies in Bipolar Disorder. Bipolar Disorders, 13, 1-15. https://doi.org/10.1111/j.1399-5618.2011.00893.x
[56]
Martinowich, K., Schloesser, R.J. and Manji, H.K. (2009) Bipolar Disorder: From Genes to Behavior Pathways. The Journal of Clinical Investigation, 119, 726-736. https://doi.org/10.1172/JCI37703
[57]
Pritz, W.F. and Mitterauer, B.J. (1984) Bipolar Mood Disorders: An Affected Sibling Study. Psychopathology, 17, 67-79. https://doi.org/10.1159/000284006
[58]
Mitterauer, B. (2000) Clock Genes, Feedback Loops and Their Possible Role in the Etiology of Bipolar Disorders: An Integrative Model. Medical Hypotheses, 55, 155-159. https://doi.org/10.1054/mehy.1999.1039
[59]
Bunney, W.E. and Bunney, B.G. (2000) Molecular Clock Genes in Man and Lower Animals: Possible Implications for Circadian Abnormalities in Depression. Neuropsychopharmacology, 22, 335-345. https://doi.org/10.1016/S0893-133X(99)00145-1
[60]
Milhiet, V., Etain, B., Boudebesse, C. and Bellivier, F. (2011) Circadian Biomarkers, Circadian Genes and Bipolar Disorders. Journal of Physiology, 105, 183-910. https://doi.org/10.1016/j.jphysparis.2011.07.002
[61]
Craddock, N. and Sklar, P. (2013) Genetics of Bipolar Disorder. The Lancet, 381, 1654-1662. https://doi.org/10.1016/S0140-6736(13)60855-7
[62]
Gonzalez, R. (2014) The Relationship between Bipolar Disorder and Biological Rhythms. Journal of Clinical Psychiatry, 75, e323-e331. https://doi.org/10.4088/JCP.13r08507
[63]
Losi, G., Mariotti, L., Sessolo, M. and Camignoto, G. (2017) New Tools to Study Astrocyte Ca2+ Signal Dynamics in Brain Networks in Vivo. Frontiers in Cellular Neuroscience, 11, 134. https://doi.org/10.3389/fncel.2017.00134
[64]
Robertson, J.M. (2013) Astrocyte Domains and the Three-Dimensional and Seamless Expression of Consciousness and Explicit Memories. Medical Hypothesis, 81, 1017-1024. https://doi.org/10.1016/j.mehy.2013.09.021
[65]
Geddes, J.R. and Miklowitz, D. (2013) Treatment of Bipolar Disorder. The Lancet, 381. https://doi.org/10.1016/S0140-6736(13)60857-0