The two proposed filters described here satisfy the Federal Communications
Commission Ultra-wideband (FCC-UWB) specifications and also control the
center frequency and bandwidth of the filters passband. These filters consist
of two distinguishing parts, Electromagnetic bandgap (EBG)-embedded multiple-
mode resonator (MMR) and interdigital coupled lines to realize high
performance in the operation band with a compact size of 14.0 mm × 10.1
mm. The main advantage of the two proposed filters is that three different
bands are tuned. The 1st tuned band is from 3.5 GHz to 11.4 GHz for the first
filter and from 3.1 GHz to 11.6 GHz for the second proposed filter, respectively.
The 2nd tuned band is from 3.5 GHz to 7.5 GHz for the first filter and
from 3.1 GHz to 7.8 GHz for the second proposed filter, respectively. While
the 3rd tuned band of the first proposed filter is from 3.5 GHz to 5.9 GHz and
from 3.1 GHz to 5.8 GHz for the second proposed filter. The bandwidth of
the filters can be changed by increasing the length of the outer open circuited
stubs which are controlled by using switching matrix equipment (mini circuit,
replacement of PIN diodes). To validate the design theory, a reconfigurable
UWB bandpass filters (BPFs) with EBG Embedded MMR are designed,
fabricated and measured. Good agreement is found between simulated and
measured results.
References
[1]
Mattaei, G., Young, L. and Jones, E.M.T. (1980) Microwave Filters, Impedance-Matching Networks, and Coupling Structures. Artech House, Norwood, MA.
[2]
Hong, J.-S. and Lancaster, M.J. (2011) Microstrip Filters for RF/Microwave Applications. Wiley-Interscience, Hoboken, NJ. https://doi.org/10.1002/9780470937297
[3]
Shum, K.M., Mo, T.T., Xue, Q. and Chan, C.H. (2005) A Compact Bandpass Filter with Two Tuning Transmission Zeros Using a CMRC Resonator. IEEE Transactions on Microwave Theory and Techniques, 53, 895-900.
https://doi.org/10.1109/TMTT.2004.842492
[4]
Saadi, A.A., Mustapha, C.E.Y., Abdelhalim, S., Abdelkader, T., Rachida, T. and Mohand, T.B. (2016) Compact UWB Bandpass Filter Based on Simple Radial Stub Resonator Structure. Microwave and Optical Technology Letters, 58, 1707-1710.
https://doi.org/10.1002/mop.29884
[5]
Wu, Y., Zhou, S., Zhang, W., Liao, M. and Liu, Y. (2014) Coupled-Line Dual-Band Bandpass Filter with Compact Structure and Wide Stopband. Electronics Letters, 50, 187-189. https://doi.org/10.1049/el.2013.3791
[6]
Pan, Z. and Wang, J. (2008) Design of the UWB Bandpass Filter by Coupled Microstrip Lines with U-Shaped Defected Ground Structure. 2008 International Conference on Microwave and Millimeter Wave Technology, Nanjing, China, 21-24 April 2008, 329-332.
[7]
Hong, J.-S. and Lancaster, M.J. (1996) Coupling of Microstrip Square Open Loop Resonators for Cross-Coupled Planar Microwave Filters. IEEE Transactions on Microwave Theory and Techniques, 44, 2099-2109. https://doi.org/10.1109/22.543968
[8]
Wang, H. and Chu, Q.-X. (2010) A Narrow-Band Hairpin-Comb Two Pole Filter with Source-Load Coupling. IEEE Transactions on Microwave Theory and Techniques, 20, 372-374. https://doi.org/10.1109/LMWC.2010.2049426
[9]
Chen, C.-F., Huang, T.-Y. and Wu, R.-B. (2006) Novel Compact Net-Type Resonators and Their Applications to Microstrip Bandpass Filters. IEEE Transactions on Microwave Theory and Techniques, 54, 755-762.
[10]
Hsu, C.L., Hsu, F.C. and Kuo, J.T. (2005) Microstrip Bandpass Filters for Ultra-Wideband (UWB) Wireless Communications. IEEE MTT-S International Microwave Symposium Digest, Long Beach, CA, USA, 17 June 2005, 679-682.
[11]
Men Zel, W., Tito, M.S.R. and Zhu, L. (2005) Low-Loss Ultra-Wide Band (UWB) Filters Using Suspended Strip Line. Proceedings of AMPC Conference 2005, Suzhou, 4-7 December 2005, 2148-2151.
[12]
Hong, J.S. and Shaman, H. (2005) An Optimum Ultra-Wide-Band Microstrip Filter. Microwave and Optical Technology Letters, 47, 230-233.
https://doi.org/10.1002/mop.21133
[13]
Li, X. and Ji, X. (2014) Novel Compact UWB Bandpass Filters Design with Cross-Coupling Between Short-Circuited Stubs. IEEE Microwave Theory and Wireless Component Letters, 2, 23-25.
https://doi.org/10.1109/LMWC.2013.2287231
[14]
Zhu, L., Sun, S. and Menzel, W. (2005) Ultra-Wideband (UWB) Bandpass Filters Using Multiple-Mode Resonator. IEEE Microwave Theory and Wireless Component Letters, 15, 796-798.
[15]
Wong, S.W. and Zhu, L. (2007) EBG-Embedded Multiple-Mode Resonator for UWB Bandpass Filter with Improved Upper Stop Band Performance. IEEE Microwave Wireless Component Letters, 17, 421-423.
https://doi.org/10.1109/LMWC.2007.897788
[16]
Zhu, L. (2003) Guided-Wave Characteristics of Periodic Coplanar Waveguides with Inductive Loading: Unit Length Transmission Parameters. IEEE Transactions on Microwave Theory and Techniques, 51, 2133-2138.
[17]
Hong, J.-S. and Lancaster, M.J. (2000) Transmission Line Filters with Advanced Filtering Characteristics. 2000 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, 11-16 June 2000, 319-322.
Tahanian, E., Chamaani, S. and Mirtaheri, S.A. (2010) Compact Ultra-Wideband Bandpass Filters Using EBG. Electronics Letters, 46, 1328-1330.
https://doi.org/10.1049/el.2010.0257
[20]
Jadhav, J. and Deore, P. (2016) A Compact Planar Ultra-Wideband Bandpass Filter Based on Multiple Resonant and Defected Ground Structure. Asia-Pacific Microwave Conference (APMC), Newdelhi, India, 5-9 December 2016, 1-3.
https://doi.org/10.1109/APMC.2016.7931400
[21]
Shan, Q., Chen, C. and Wu, W. (2016) Design of an UWB Bandpass Filter with a Notched Band Using Asymmetric Loading Stubs. IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), Beijing, China, 5-8 June 2016, 410-412. https://doi.org/10.1109/ICMMT.2016.7761791
[22]
Song, Y., Yang, G.M. and Geyi, W. (2014) Compact UWB Bandpass Filter with Dual Notched Bands Using Defected Ground Structures. IEEE Microwave and Wireless Components Letters, 2, 230-232.
https://doi.org/10.1109/LMWC.2013.2296291
[23]
Zhu, H. and Chu, Q.X. (2013) Ultra-Wideband Bandpass Filter with a Notch-Band Using Stub-Loaded Ring Resonator. IEEE Microwave and Wireless Components Letters, 23, 341-343. https://doi.org/10.1109/LMWC.2013.2262928
[24]
Federal Communication Committee (2002) First Report and Order, Revision of Part 15 Commission’s Rule Regarding Ultra Wideband Transmission Systems. FCC 02-48.