全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Physico-Chemical and Mineralogical Characterization of Two Clay Materials of the Far North Region of Cameroon (Makabaye, Maroua)

DOI: 10.4236/ampc.2018.89025, PP. 378-386

Keywords: Characterization, Physico-Chemical, Mineralogical, Clay Materials, Mayo Tsanaga, Maroua-Cameroon

Full-Text   Cite this paper   Add to My Lib

Abstract:

To contribute to the valorization of local materials, the physico-chemical and mineralogical characterization of two clay materials MJ and MN collected in the Mayo Tsanaga river which crosses the Makabaye district of Maroua (Cameroon) was carried out. For this purpose, various methods of characterization have been used, namely granulometric analysis, Atterberg limits, X-ray fluorescence spectrometry and X-ray diffraction. It is apparent from the granulometry that the clay materials studied titrate 33.77% of clays for MJ against 44.13% for MN. The plasticity indices Ip with values IpMJ = 19.27% and IpMN = 23.4% place the materials in the plastic domain and offer them the possibility to being shaped into objects. The chemical composition of the MJ and MN materials reveals that the silicon oxide SiO2, the aluminumoxide Al2O3 and iron oxide Fe2O3 are their main constituents. The X-ray diffraction of the MJ and MN materials shows that they consist mainly of quartz with associated kaolinite, illite, montmorillonite, perlialite, dickite, nacrite, amesite, albite, brookite and anorthite. In addition to these, 2/1 minerals such as muscovite, nontronite, glauconite, and phlogopite are also identified in the MJ material. The peaks of sanidine, microcline and gismondine are also found in the MN material. The materials being rich in clay minerals 2/1 can be valorized in the adsorption and the absorption of the oils and greases and in the waterproofing of the grounds. The presence of quartz, kaolinite and illite is undoubtedly favorable for the manufacture of ceramic products in terracotta. These products will be obtained at a relatively lower temperature due to illite, feldspars and iron minerals that provide vitrification during firing by forming eutectics. The aluminosilicate amorphous phases contained in the studied materials can be exploited to produce geopolymer cements and concretes.

References

[1]  Velde, B. (1992) Introduction to Clay Minerals: Chemistry, Origins, Uses and Environmental Significance. Chapman and Hall Ltd., London.
https://doi.org/10.1007/978-94-011-2368-6
[2]  Meunier, A. (2003) Argiles. Contemporary Publishing International-GB Science.
[3]  Sieffermann, G. (1959) Premières déterminations des minéraux argileux des sols du Cameroun. Conférence Interafricaine des Sols, Dalaba, 2-11 November 1959, 139-150.
[4]  AFNOR (1990) Granulats-Analyse granulométrique par tamisage. NF P18-560.
[5]  AFNOR/SOLS (1993) Sols: Reconnaissance et essais—Détermination des limites d’Atterberg—Limite de liquidité à la coupelle—Limite de plasticité au rouleau. NF P 94-051.
[6]  Anger, R., Fontaine, L., Houben, H., Doat, P., Van Damme, H., Olagnon, C. and Jorand, Y. (2011) La terre, un béton comme les autres? Quelques mécanismes de stabilisation du matériau terre. In: Rainer, L., et al., Eds., Terra 2008: The 10th International Conference on the Study and Conservation of Earthen Architectural Heritage, Getty Publications, Bamako, 222.
[7]  Mathieu, C. and Lozet, J. (2011) Dictionnaire encyclopédique de science du sol: Avec index anglais-français. Lavoisier, Paris.
[8]  Brosnan, D.A. and Robinson, G.C. (2003) An Introduction to Drying of Ceramics: with Laboratory Exercises. The American Ceramic Society.
[9]  Vulliet, L., Laloui, L. and Zhao, J. (2016) Mécanique des sols et des roches (TGC volume 18): Avec écoulements souterrains et transferts de chaleur. PPUR Presses polytechniques et universitaires romandes, Lausanne.
[10]  Elimbi, A., Founyapte, S. and Njopwouo, D. (2004) Effets de la température de cuisson sur la composition minéralogique et les propriétés physiques et mécaniques de deux matériaux du gisement argileux de Bakong (Cameroun). In: Annales de chimie, Vol. 29, Lavoisier, Paris, 67-77.
https://doi.org/10.3166/acsm.29.2.67-77
[11]  Njoya, D., Elimbi, A., Nkoumbou, C., Njoya, A., Njopwouo, D., Lecomte, G. and Yvon, J. (2007) Contribution à l’étude physico—Chimique et minéralogique des argiles de Mayouom (Cameroun) In: Annales de Chimie, Vol. 32, Lavoisier, Paris, 55-68.
https://doi.org/10.3166/acsm.32.55-68
[12]  Pialy, P. (2009) Etude de quelques matériaux argileux du site de Lembo (Cameroun): Minéralogie, comportement au frittage et analyse des propriétés d’élasticité. Doctoral Dissertation, University of Limoges, Limoges.
[13]  Mache, J.R. (2013) Minéralogie et propriétés physico-chimiques des smectites de Bana et Sabga (Cameroun) Utilisation dans la décoloration d’une huile végétale alimentaire. Doctoral Dissertation, Université de Liège, Liège.
[14]  Balo Madi, A., Nguetnkam, J.P., Bitom, D.L. and Basga, S.D. (2017) Caractérisation géo-mécanique et classification des matériaux vertisoliques de la vallée du Logone au Cameroun. Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, Seoul, 17-21 September 2017, 397-401.
[15]  Meunier, A. and Velde, B.D. (2013) Illite: Origins, Evolution and Metamorphism. Springer Science & Business Media, Berlin.
[16]  Sigg, J. (1991) Les produits de terre cuite: Matières premières, fabrication, caractéristiques, applications: Faïences et grès. Ed. Septima.
[17]  Djoufac Woumfo, E., Elimbi, A., Panczer, G., Nyada Nyada, R. and Njopwouo, D. (2006) Caractérisations physico-chimiques et minéralogiques des vertisols de Garoua (Nord Cameroun). Annales de Chimie, 31, 75-90.
https://doi.org/10.3166/acsm.31.75-90
[18]  Ekodeck, G.E. (1976) Nature et comportement géochimique des formations superficielles gonflantes du Nord-Cameroun. Th. 3e cycle, Université de Grenoble, 182 p.
[19]  Hinckley, D.N. (1962) Variability in “Crystallinity” Values among the Kaolin Deposits of the Coastal Plain of Georgia and South Carolina. Clays and Clay Minerals, 11, 229-235.
https://doi.org/10.1346/CCMN.1962.0110122
[20]  Bergaya, F., Theng, B.K.G. and Lagaly, G. (2006) Developments in Clay Science 1. Handbook of Clay Science, Chapter 10, Elsevier, New York.
[21]  Haussonne, J.M. (2005) Céramiques et verres: Principes et techniques d’élaboration (Vol. 16) PPUR presses polytechniques.
[22]  Elimbi, A., Tchakoute, H.K. and Njopwouo, D. (2011) Effects of Calcination Temperature of Kaolinite Clays on the Properties of Geopolymer Cements. Construction and Building Materials, 25, 2805-2812.
https://doi.org/10.1016/j.conbuildmat.2010.12.055.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133