To contribute to the valorization of local materials, the
physico-chemical and mineralogical characterization of two clay materials MJ
and MN collected in the Mayo Tsanaga river which crosses the Makabaye district
of Maroua (Cameroon) was carried out. For this purpose, various methods of
characterization have been used, namely granulometric analysis, Atterberg
limits, X-ray fluorescence spectrometry and X-ray diffraction. It is apparent
from the granulometry that the clay materials studied titrate 33.77% of clays
for MJ against 44.13% for MN. The plasticity indices Ip with values IpMJ = 19.27% and IpMN = 23.4% place the materials in the plastic domain
and offer them the possibility to being shaped into objects. The chemical
composition of the MJ and MN materials reveals that the silicon oxide SiO2,
the aluminumoxide Al2O3 and iron oxide Fe2O3 are their main constituents. The X-ray diffraction of the MJ and MN materials
shows that they consist mainly of quartz with associated kaolinite, illite,
montmorillonite, perlialite, dickite, nacrite, amesite, albite, brookite and
anorthite. In addition to these, 2/1 minerals such as muscovite, nontronite,
glauconite, and phlogopite are also identified in the MJ material. The peaks of
sanidine, microcline and gismondine are also found in the MN material. The
materials being rich in clay minerals 2/1 can be valorized in the adsorption
and the absorption of the oils and greases and in the waterproofing of the
grounds. The presence of quartz, kaolinite and illite is undoubtedly favorable for the manufacture of ceramic products in terracotta.
These products will be obtained at a relatively lower temperature due to
illite, feldspars and iron minerals that provide vitrification during firing by
forming eutectics. The aluminosilicate amorphous phases contained in the
studied materials can be exploited to produce geopolymer cements and concretes.
References
[1]
Velde, B. (1992) Introduction to Clay Minerals: Chemistry, Origins, Uses and Environmental Significance. Chapman and Hall Ltd., London.
https://doi.org/10.1007/978-94-011-2368-6
[2]
Meunier, A. (2003) Argiles. Contemporary Publishing International-GB Science.
[3]
Sieffermann, G. (1959) Premières déterminations des minéraux argileux des sols du Cameroun. Conférence Interafricaine des Sols, Dalaba, 2-11 November 1959, 139-150.
[4]
AFNOR (1990) Granulats-Analyse granulométrique par tamisage. NF P18-560.
[5]
AFNOR/SOLS (1993) Sols: Reconnaissance et essais—Détermination des limites d’Atterberg—Limite de liquidité à la coupelle—Limite de plasticité au rouleau. NF P 94-051.
[6]
Anger, R., Fontaine, L., Houben, H., Doat, P., Van Damme, H., Olagnon, C. and Jorand, Y. (2011) La terre, un béton comme les autres? Quelques mécanismes de stabilisation du matériau terre. In: Rainer, L., et al., Eds., Terra 2008: The 10th International Conference on the Study and Conservation of Earthen Architectural Heritage, Getty Publications, Bamako, 222.
[7]
Mathieu, C. and Lozet, J. (2011) Dictionnaire encyclopédique de science du sol: Avec index anglais-français. Lavoisier, Paris.
[8]
Brosnan, D.A. and Robinson, G.C. (2003) An Introduction to Drying of Ceramics: with Laboratory Exercises. The American Ceramic Society.
[9]
Vulliet, L., Laloui, L. and Zhao, J. (2016) Mécanique des sols et des roches (TGC volume 18): Avec écoulements souterrains et transferts de chaleur. PPUR Presses polytechniques et universitaires romandes, Lausanne.
[10]
Elimbi, A., Founyapte, S. and Njopwouo, D. (2004) Effets de la température de cuisson sur la composition minéralogique et les propriétés physiques et mécaniques de deux matériaux du gisement argileux de Bakong (Cameroun). In: Annales de chimie, Vol. 29, Lavoisier, Paris, 67-77. https://doi.org/10.3166/acsm.29.2.67-77
[11]
Njoya, D., Elimbi, A., Nkoumbou, C., Njoya, A., Njopwouo, D., Lecomte, G. and Yvon, J. (2007) Contribution à l’étude physico—Chimique et minéralogique des argiles de Mayouom (Cameroun) In: Annales de Chimie, Vol. 32, Lavoisier, Paris, 55-68. https://doi.org/10.3166/acsm.32.55-68
[12]
Pialy, P. (2009) Etude de quelques matériaux argileux du site de Lembo (Cameroun): Minéralogie, comportement au frittage et analyse des propriétés d’élasticité. Doctoral Dissertation, University of Limoges, Limoges.
[13]
Mache, J.R. (2013) Minéralogie et propriétés physico-chimiques des smectites de Bana et Sabga (Cameroun) Utilisation dans la décoloration d’une huile végétale alimentaire. Doctoral Dissertation, Université de Liège, Liège.
[14]
Balo Madi, A., Nguetnkam, J.P., Bitom, D.L. and Basga, S.D. (2017) Caractérisation géo-mécanique et classification des matériaux vertisoliques de la vallée du Logone au Cameroun. Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, Seoul, 17-21 September 2017, 397-401.
[15]
Meunier, A. and Velde, B.D. (2013) Illite: Origins, Evolution and Metamorphism. Springer Science & Business Media, Berlin.
[16]
Sigg, J. (1991) Les produits de terre cuite: Matières premières, fabrication, caractéristiques, applications: Faïences et grès. Ed. Septima.
[17]
Djoufac Woumfo, E., Elimbi, A., Panczer, G., Nyada Nyada, R. and Njopwouo, D. (2006) Caractérisations physico-chimiques et minéralogiques des vertisols de Garoua (Nord Cameroun). Annales de Chimie, 31, 75-90.
https://doi.org/10.3166/acsm.31.75-90
[18]
Ekodeck, G.E. (1976) Nature et comportement géochimique des formations superficielles gonflantes du Nord-Cameroun. Th. 3e cycle, Université de Grenoble, 182 p.
[19]
Hinckley, D.N. (1962) Variability in “Crystallinity” Values among the Kaolin Deposits of the Coastal Plain of Georgia and South Carolina. Clays and Clay Minerals, 11, 229-235. https://doi.org/10.1346/CCMN.1962.0110122
[20]
Bergaya, F., Theng, B.K.G. and Lagaly, G. (2006) Developments in Clay Science 1. Handbook of Clay Science, Chapter 10, Elsevier, New York.
[21]
Haussonne, J.M. (2005) Céramiques et verres: Principes et techniques d’élaboration (Vol. 16) PPUR presses polytechniques.
[22]
Elimbi, A., Tchakoute, H.K. and Njopwouo, D. (2011) Effects of Calcination Temperature of Kaolinite Clays on the Properties of Geopolymer Cements. Construction and Building Materials, 25, 2805-2812.
https://doi.org/10.1016/j.conbuildmat.2010.12.055.