全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dose-Injury Relation as a Model for Uncertainty Propagation from Input Dose to Target Dose

DOI: 10.4236/ajor.2018.85021, PP. 360-385

Keywords: Dose Injury Relation, Dose Propagation Uncertainty, Median Injury Dose, 10 - 90 Percentile Width, Skewness, Mapping Injury Model from One Population to Another

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study a general framework for assessing the injury probability corresponding to an input dose quantity. In many applications, the true value of input dose may not be directly measurable. Instead, the input dose is estimated from measurable/controllable quantities via numerical simulations using assumed representative parameter values. We aim at developing a simple modeling framework for accommodating all uncertainties, including the discrepancy between the estimated input dose and the true input dose. We first interpret the widely used logistic dose-injury model as the result of dose propagation uncertainty from input dose to target dose at the active site for injury where the binary outcome is completely determined by the target dose. We specify the symmetric logistic dose-injury function using two shape parameters: the median injury dose and the 10 - 90 percentile width. We relate the two shape parameters of injury function to the mean and standard deviation of the dose propagation uncertainty. We find 1) a larger total uncertainty will spread more the dose-response function, increasing the 10 - 90 percentile width and 2) a systematic over-estimate of the input dose will shift the injury probability toward the right along the estimated input dose. This framework provides a way of revising an established injury model for a particular test population to predict the injury model for a new population with different distributions of parameters that affect the dose propagation and dose estimation. In addition to modeling dose propagation uncertainty, we propose a new 3-parameter model to include the skewness of injury function. The proposed 3-parameter function form is based on shifted log-normal distribution of dose propagation uncertainty and is approximately invariant when other uncertainties are added. The proposed 3-parameter function form provides a framework for extending skewed injury model from a test population to a target population in application.

References

[1]  Vorst, M.V., Stuhmiller, J., Ho, K., Yoganandan, N. and Pintar, F. (2003) Statistically and Biomechanically Based Criterion for Impact-Induced Skull Fracture. Annual Proceedings/Association for the Advancement of Automotive Medicine, 47, 363-381.
[2]  Cazares, S.M., Finnin, M.S., Holzer, J.R., King, A.L. and Kramer, C.M. (2017) Significance of Rib Fractures Potentially Caused by Blunt Impact Non Lethal Weapons. Institute for Defense Analyses (IDA), Alexandria, VA.
[3]  Chan, P., Ho, K. and Ryan, A.F. (2016) Impulse Noise Injury Model. Military Medicine, 181, 59-69. https://doi.org/10.7205/MILMED-D-15-00139
[4]  Murphy, W.J., Khan, A. and Shaw, P.B. (2011) Analysis of Chinchilla Temporary and Permanent Threshold Shifts Following Impulsive Noise Exposure. Centers for Disease Control and Prevention, Cincinnati, OH.
[5]  Hampton, C.E. and Kleinberger, M. (2018) Material Models for the Human Torso Finite Element Model. US Army Research Laboratory (ARL), Aberdeen Proving Ground, MD.
[6]  Shen, W., Niu, E., Webber, C., Huang, J. and Bykanova, L. (2012) ATBM Analyst’s Guide for Model Verification and Validation. L-3 Applied Technologies, San Diego, CA.
[7]  Kramer, C. and Swallow, J. (2018) Error Propagation in RSI Estimates of Blunt Impact NLWs Using the Advanced Total Body Model. Institute for Defense Analyses (IDA), Alexandria, VA.
[8]  Cox, D.R. (1958) The Regression Analysis of Binary Sequences. Journal of the Royal Statistical Society. Series B, 20, 215-242.
[9]  Wang, H., Burgei, W.A. and Zhou, H. (2017) Interpreting Dose-Response Relation for Exposure to Multiple Sound Impulses in the Framework of Immunity. Health, 9, 1817-1842.
https://doi.org/10.4236/health.2017.913132
[10]  Sturdivan, L.M., Viano, D.C. and Champion, H.R. (2004) Analysis of Injury Criteria to Assess Chest and Abdominal Injury Risks in Blunt and Ballistic Impacts. The Journal of Trauma: Injury, Infection, and Critical Care, 56, 651-663.
https://doi.org/10.1097/01.TA.0000074108.36517.D4
[11]  Bliss, C.I. (1934) The Method of Probits. Science, 79, 38-39.
https://doi.org/10.1126/science.79.2037.38
[12]  Duma, S.M., Schreiber, P.H., McMaster, J.D., Crandall, J.R. and Bass, C.R. (2002) Fracture Tolerance of the Male Forearm: The Effect of Pronation versus Supination. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 216, 649-654.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133