全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hominin Evolution Was Caused by Introgression from Gorilla

DOI: 10.4236/ns.2018.109033, PP. 329-337

Keywords: Anthropology, Australopithecus, Chimpanzee, Darwin, Gorilla, Homo, Introgression, Numt, Pan, Paranthropus, Pthirus

Full-Text   Cite this paper   Add to My Lib

Abstract:

The discovery of Paranthropus deyiremeda in 3.3 - 3.5 million-year-old fossil sites in Afar, together with 30% of the gorilla genome showing lineage sorting between humans and chimpanzees, and a NUMT (“nuclear mitochondrial DNA segment”) on chromosome 5 that is shared by both gorillas, humans and chimpanzees, and shown to have diverged at the time of the Pan-Homo split rather than the Gorilla/Pan-Homo split, provides conclusive evidence that introgression from the gorilla lineage caused the Pan-Homo split, and the speciation of both the Australopithecus lineage and the Paranthropus lineage.

References

[1]  Kurzweil, R. (2004) The Law of Accelerating Returns. In: Teuscher, C., Ed., Alan Turing: Life and Legacy of a Great Thinker, Springer, Berlin Heidelberg, 381-416.
https://doi.org/10.1007/978-3-662-05642-4_16
[2]  Stephens, Z.D., Lee, S.Y., Faghri, F., Campbell, R.H., Zhai, C., Efron, M.J., et al. (2015) Big Data: Astronomical or Genomical? PLOS Biology, 13, e1002195.
https://doi.org/10.1371/journal.pbio.1002195
[3]  Perna, N.T. and Kocher, T.D. (1996) Mitochondrial DNA: Molecular Fossils in the Nucleus. Current Biology, 6, 128-129.
https://doi.org/10.1016/s0960-9822(02)00441-4
[4]  Bensasson, D. (2001) Mitochondrial Pseudogenes: Evolution’s Misplaced Witnesses. Trends in Ecology & Evolution, 16, 314-321.
https://doi.org/10.1016/s0169-5347(01)02151-6
[5]  Hazkani-Covo, E., Zeller, R.M. and Martin, W. (2010) Molecular Poltergeists: Mitochondrial DNA Copies (Numts) in Sequenced Nuclear Genomes. PLoS Genetics, 6, e1000834.
https://doi.org/10.1371/journal.pgen.1000834
[6]  Li-Sucholeiki, X.-C., Khrapko, K., André, P.C., Marcelino, L.A., Karger, B.L. and Thilly, W.G. (1999) Applications of Constant Denaturant Capillary Electrophoresis/High-Fidelity Polymerase Chain Reaction to Human Genetic Analysis. Electrophoresis, 20, 1224-1232.
https://doi.org/10.1002/(sici)1522-2683(19990101)20:6<1224::aid-elps1224>3.0.co;2-o
[7]  Popadin, K., Gunbin, K., Peshkin, L., Annis, S., Fleischmann, Z., Kraytsberg, G., et al. (2017) Mitochondrial Pseudogenes Suggest Repeated Inter-Species Hybridization in Hominid Evolution. Cold Spring Harbor Laboratory.
https://doi.org/10.1101/134502
[8]  Tomoko, O. (1995) Synonymous and Nonsynonymous Substitutions in Mammalian Genes and the Nearly Neutral Theory. Journal of Molecular Evolution, 40, 56-63.
https://doi.org/10.1007/bf00166595
[9]  Brown, W., Jr. George, M. and Wilson, A.C. (1979) Rapid Evolution of Animal Mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 79, 3246-3250.
[10]  Scally, A., Dutheil, J.Y., Hillier, L.W., Jordan, G.E., Goodhead, I., Herrero, J., et al. (2012) Insights into Hominid Evolution from the Gorilla Genome Sequence. Nature, 483, 169-175.
https://doi.org/10.1038/nature10842
[11]  Baack, E.J. and Rieseberg, L.H. (2007) A Genomic View of Introgression and Hybrid Speciation. Current Opinion in Genetics & Development, 17, 513-518.
https://doi.org/10.1016/j.gde.2007.09.001
[12]  Cerling, T.E., Mbua, E., Kirera, F.M., Manthi, F.K., Grine, F.E., Leakey, M.G., et al. (2011) Diet of Paranthropus boisei in the Early Pleistocene of East Africa. Proceedings of the National Academy of Sciences, 108, 9337-9341.
https://doi.org/10.1073/pnas.1104627108
[13]  Melcher, M., Wolf, D. and Bernor, R.L. (2013) The Evolution and Paleodiet of the Eurygnathohippus feibeli Lineage in Africa. Paläontologische Zeitschrift, 88, 99-110.
https://doi.org/10.1007/s12542-013-0180-6
[14]  Levin, N.E., Haile-Selassie, Y., Frost, S.R. and Saylor, B.Z. (2015) Dietary Change among Hominins and Cercopithecids in Ethiopia during the Early Pliocene. Proceedings of the National Academy of Sciences, 112, 12304-12309.
https://doi.org/10.1073/pnas.1424982112
[15]  Haile-Selassie, Y., Gibert, L., Melillo, S.M., Ryan, T.M., Alene, M., Deino, A., et al. (2015) New Species from Ethiopia Further Expands Middle Pliocene Hominin Diversity. Nature, 521, 483-488.
https://doi.org/10.1038/nature14448
[16]  Haile-Selassie, Y., Saylor, B.Z., Deino, A., Levin, N.E., Alene, M. and Latimer, B.M. (2012) A New Hominin Foot from Ethiopia Shows Multiple Pliocene Bipedal Adaptations. Nature, 483, 565-569.
https://doi.org/10.1038/nature10922
[17]  Haile-Selassie, Y., Melillo, S.M. and Su, D.F. (2016) The Pliocene Hominin Diversity Conundrum: Do More Fossils Mean Less Clarity? Proceedings of the National Academy of Sciences, 113, 6364-6371.
https://doi.org/10.1073/pnas.1521266113
[18]  Wood, B.K. and Boyle, E. (2016) Hominin Taxic Diversity: Fact or Fantasy? American Journal of Physical Anthropology, 159, 37-78.
https://doi.org/10.1002/ajpa.22902
[19]  Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., et al. (2001) The Sequence of the Human Genome. Science, 291, 1304-1351.
https://doi.org/10.1126/science.1058040
[20]  Waterson, R.H. (2005) Initial Sequence of the Chimpanzee Genome and Comparison with the Human Genome. Nature, 437, 69-87.
https://doi.org/10.1038/nature04072

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133