全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Profile Characterization and Temperature Effect on the Wettability of Microstructured Surfaces

DOI: 10.4236/jsemat.2018.84008, PP. 83-94

Keywords: Wetting, Microstructured Surface, Temperature Effect, Contact Angle

Full-Text   Cite this paper   Add to My Lib

Abstract:

Wetting is one of the omnipresent phenomena governed via natural laws. Moreover, surface wettability at non-ambient temperature especially at high temperature (30°C to 90°C) is of great importance in many industrial processes. In this study, Si wafers with various structures were fabricated to investigate wettability at different temperatures. Three shapes with micro-pillar structured surfaces were designed and fabricated. Pillar-structured surfaces were fabricated by photolithography and ICP etching. The temperature-dependent wettability of single-phase regime droplets was characterized using contact angle measurements. The wetting behavior of a water droplet was observed.

References

[1]  Marik, T. (2011) Study and Applications of Liquid Behavior on Microtextured Solid Surfaces. PhD Thesis, University of Illinois at Urbana Champaign.
[2]  Tadmor, R., Das, R., Gulec, S., Liu, J., N’guessan, H.E., Shah, M., Wasnik, P.S. and Yadav, S.B. (2017) Solid-Liquid Work of Adhesion. Langmuir, 33, 3594-3600.
https://doi.org/10.1021/acs.langmuir.6b04437
[3]  Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L. and Zhu, D. (2002) Super-Hydrophobic Surfaces: From Natural to Artificial. Advanced Materials, 14, 1857-1860.
https://doi.org/10.1002/adma.200290020
[4]  Liu, M.J., Wang, S.T., Wei, Z.X., Song, Y.L. and Jiang, L. (2009) Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface. Advanced Materials, 21, 665-669.
https://doi.org/10.1002/adma.200801782
[5]  Gao, X.F. and Jiang, L. (2004) Biophysics: Water-Repellent Legs of Water Striders. Nature, 432, 36,
https://doi.org/10.1038/432036a
[6]  Zheng, Y., Gao, X. and Jiang, L. (2007) Directional Adhesion of Superhydrophobic Butterfly Wings. Soft Matter, 3, 178-182.
https://doi.org/10.1039/B612667G
[7]  Gao, X., Yan, X., Yao, X., Xu, L., Zhang, K., Zhang, J., Yang, B. and Jiang, L. (2007) The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography. Advanced Materials, 19, 2213-2217.
https://doi.org/10.1002/adma.200601946
[8]  Parker, R. and Lawrence, C.R. (2001) Water Capture by a Desert Beetle. Nature, 414, 33.
https://doi.org/10.1038/35102108
[9]  Zheng, Y.M., Bai, H., Huang, Z.B., Tian, X.L., Nie, F.-Q., Zhao, Y., Zhai, J. and Jiang, L. (2010) Directional Water Collection on Wetted Spider Silk. Nature, 463, 640-643.
https://doi.org/10.1038/nature08729
[10]  Wenzel, R.N. (1936) Resistance of Solid Surfaces to Wetting by Water. Industrial & Engineering Chemistry, 28, 988-994.
https://doi.org/10.1021/ie50320a024
[11]  Wang, J.Y., Do-Quang, M., Cannon, J.J., Yue, F., Suzuki, Y., Amberg, G. and Shiomi, J. (2015) Surface Structure Determines Dynamic Wetting. Scientific Reports, 5, 8474.
https://doi.org/10.1038/srep08474
[12]  Zong, D., Yang, Z. and Duan, Y. (2018) Dynamic Spreading of Droplets on Lyophilic Micropillar-Arrayed Surfaces. Langmuir, 34, 4417-4425.
https://doi.org/10.1021/acs.langmuir.7b04358
[13]  Qiao, S., Li, S., Li, Q., Li, B., Liu, K. and Feng, X. (2017) Friction of Droplets Sliding on Microstructuredsuperhydrophobic Surfaces. Langmuir, 33, 13480-13489.
https://doi.org/10.1021/acs.langmuir.7b03087
[14]  Fang, W., Guo, H., Li, B., Li, Q. and Feng, X. (2018) Revisiting the Critical Condition for the Cassie-Wenzel Transition on Micropillar-Structured Surfaces. Langmuir, 34, 3838-3844.
https://doi.org/10.1021/acs.langmuir.8b00121
[15]  Yamamoto, K. and Ogata, S. (2008) 3-D Thermodynamic Analysis of Superhydrophobic Surfaces. Journal of Colloid and Interface Science, 326, 471-477.
https://doi.org/10.1016/j.jcis.2008.06.044
[16]  Zhang, T., Wang, J., Chen, L., Zhai, J., Song, Y. and Jiang, L. (2011) High Temperature Wetting Transition on Micro- and Nanostructured Surfaces. Angewandte Chemie, 123, 5311-5314.
https://doi.org/10.1002/anie.201007262
[17]  Hashim, J., Looney, L. and Hashmi, M.S.J. (2001) The Wettability of SiC Particles by Molten Aluminium Alloy. Journal of Materials Processing Technology, 119, 324-328.
https://doi.org/10.1016/S0924-0136(01)00975-X
[18]  Liu, Y., Chen, X. and Xin, J. (2009) Can Superhydrophobic Surfaces Repel Hot Water? Journal of Materials Chemistry, 19, 5602-5611.
https://doi.org/10.1039/b822168e
[19]  Kim, B.S., Lee, H., Shin, S., Choi, G. and Cho, H.H. (2014) Interfacial Wicking Dynamics and Its Impact on Critical Heat Flux of Boiling Heat Transfer. Applied Physics Letters, 105, Article ID: 191601.
https://doi.org/10.1063/1.4901569
[20]  Wang, N., Zhao, Y. and Jiang, L. (2008) Low-Cost, Thermoresponsive Wettability of Surfaces: Poly(N-isopropylacrylamide)/Polystyrene Composite Films Prepared by Electrospinning. Macromolecular Rapid Communications, 29, 485-489.
https://doi.org/10.1002/marc.200700785
[21]  Sun, T., Liu, H., Song, W., Wang, X., Jiang, L., Li, L. and Zhu, D. (2004) Responsive Aligned Carbon Nanotubes. Angewandte Chemie, 116, 4663-4666.
https://doi.org/10.1002/anie.200460774
[22]  Liu, Y., Komatsuzaki, H., Duan, Z., Imai, S. and Nishioka, Y. (2011) Diffuser Micropump Structured with Extremely Flexible Diaphragm of 2-μm-thick Polyimide Film. Japanese Journal of Applied Physics, 50, 453-455.
https://doi.org/10.1143/JJAP.50.04DK15
[23]  Komatsuzaki, H., Suzuki, K., Liu, Y., Kosugi, T., Ikoma, R. and Nishioka, Y. (2011) Flexible Polyimide Micropump Fabricated Using Hot Embossing. Japanese Journal of Applied Physics, 50, 06GM09.
https://doi.org/10.1143/JJAP.50.06GM09
[24]  Tsai, P.C., Lammertink, R.G.H., Wessling, M. and Lohse, D. (2010) Evaporation-Triggered Wetting Transition for Water Droplets upon Hydrophobic Microstructures. Physical Review Letters, 104, Article ID: 116102.
https://doi.org/10.1103/PhysRevLett.104.116102
[25]  Daniel, S., Chaudhury, M.K. and Chen, J.C. (2001) Fast Drop Movements Resulting from the Phase Change on a Gradient Surface. Science, 291, 633-636.
https://doi.org/10.1126/science.291.5504.633
[26]  Linke, H., Alemán, B.J., Melling, L.D., Taormina, M.J., Francis, M.J., Dow-Hygelund, C.C., Narayanan, V., Taylor, R.P. and Stout, A. (2006) Self-Propelled Leidenfrost Droplets. Physical Review Letters, 96, Article ID: 154502.
https://doi.org/10.1103/PhysRevLett.96.154502
[27]  Young, T. (1805) An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London, 95, 65-87.
https://doi.org/10.1098/rstl.1805.0005
[28]  Cassie, A.B.D. and Baxter, S. (1944) Wettability of Porous Surfaces. Faraday Society, 40, 546-551.
https://doi.org/10.1039/tf9444000546
[29]  Lv, C., Yang, C., Hao, P., He, F. and Zheng, Q. (2010) Sliding of Water Droplets on Microstructured Hydrophobic Surfaces. Langmuir, 26, 8704-8708.
https://doi.org/10.1021/la9044495
[30]  Zheng, Q., Lv, C., Hao, P. and Sheridan, J. (2010) Small Is Beautiful, and Dry. Science China Physics Mechanics & Astronomy, 53, 2245-2259.
https://doi.org/10.1007/s11433-010-4172-1
[31]  Wong, T.-S. and Ho, C.-M. (2009) Dependence of Macroscopic Wetting on Nanoscopic Surface Textures. Langmuir, 25, 12851-12854.
https://doi.org/10.1021/la902430w
[32]  Lv, C., Wang, Z., Wang, P. and Tang, X. (2012) Photodegradable Polyurethane Self-Assembled Nanoparticles for Photocontrollable Release. Langmuir, 28, 9387-9394.
https://doi.org/10.1021/la301534h
[33]  Susarrey-Arce, A., Marín, á.G., Nair, H., Lefferts, L., Gardeniers, J.G.E., Lohse, D. and van Houselt, A. (2012) Absence of an Evaporation-Driven Wetting Transition on Omniphobic Surfaces. Soft Matter, 8, 9765-9770.
https://doi.org/10.1039/c2sm25746g
[34]  Tadmor, R. (2004) Line Energy and the Relation between Advancing, Receding, and Young Contact Angles. Angmuir, 20, 7659-7664.
https://doi.org/10.1021/la049410h

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133