Objectives: Patients
undergoing 18F-FDG PET/CT imaging are considered external radiation
sources. Accurate dose rate estimates are important for conducting realistic risk assessments and performing dose
reconstruction in cases of accidental exposures. The patient radiation self-attenuation factor is assumed to be a function of
the patient’s body size metrics, but we
can use these metrics to predict the dose rate around the patients with
accuracy. The objective of this work was first
to measure the patient attenuation factor by performing direct dose rate
measurements from patients undergoing PET/CT imaging studies using 18F-FDG.
The second objective was to study the possible correlation between the measured
dose rate constant per unit activity from the patients and their body size metrics;
five metrics were tested in this work. The last objective was to measure the
patients’ voiding factor. Methods: We have measured dose rates at one
meter from 57 patients and noted the patient’s
height (H), weight (W) and calculated patient size metrics namely: Equivalent Cylindrical
Diameter (ECD), Equivalent Spherical Diameter (ESD) and the Body Mass Index
(BMI). Results: The measured average dose rate was 92.2± 14μSv·h
References
[1]
Madsen, M.T., Anderson, J.A., Halama, J.R., Kleck, J., Simpkin, D.J., Votaw, J.R., Wendt III, R.E., Williams, L.E. and Yester, M.V. (2006) AAPM Task Group 108: PET and PET/CT Shielding Requirements. Medical Physics, 33, 4-15. https://doi.org/10.1118/1.2135911
[2]
Hays, M.T. and Segall, G.M. (1998) A Mathematical Model for the Distribution of Fluorodeoxyglucose in Humans. Journal of Nuclear Medicine, 40, 1358-1366.
[3]
Jones, S.C., Alavi, A., Christman, D., Montanez, I., Wolf, A.P. and Reivich, M. (1982) The Radiation Dosimetry of 2-[F-18]Fluoro-2-Deoxy-D-Glucose in Man. Journal of Nuclear Medicine, 23, 613-617.
[4]
Mejia, A.A., Nakamura, T., Masatoshi, I., Hatazawa, J., Masaki, M. and Shoichi, W. (1991) Estimation of Absorbed Doses in Humans due to Intravenous Administration of Fluorine-18-Fluorodeoxyglucose in PET Studies. Journal of Nuclear Medicine, 32, 699-706.
[5]
Dowd, M.T., Chen, C.T., Wendel, M.J., Faulhaber, P.J. and Cooper, M.D. (1991) Radiation Dose to the Bladder Wall from 2-[18F] Fluoro-2-Deoxy-D-Glucose in Adult Humans. Journal of Nuclear Medicine, 32, 707-712.
[6]
Cho, I.H., Han, E.O. and Kim, S.T. (2014) Very Different External Radiation Doses in Patients Undergoing PET/CT or PET/MRI Scans and Factors Affecting Them. Hellenic Journal of Nuclear Medicine, 17, 13-18.
[7]
Watson, C.C., Casey, M.E., Bendriem, B., Carney, J.P., Townsend, D.W., Eberl, S., Meikle, S. and Di Filippo, F.P. (2005) Optimizing Injected Dose in Clinical PET by Accurately Modeling the Counting-Rate Response Functions Specific to Individual Patient Scans. Journal of Nuclear Medicine, 46, 1825-1834.
[8]
Halpern, B.S., Dahlbom, M., Auerbach, M.A., Schiepers, C., Fueger, B.J., Weber, W.A., Silverman, D.H.S., Ratib, O. and Czernin, J. (2005) Optimizing Imaging Protocols for Overweight and Obese Patients: A Lutetium Orthosilicate PET/CT Study. Journal of Nuclear Medicine, 46, 603-607.
[9]
Halpern, B.S., Dahlbom, M., Quon, A., Schiepers, C., Waldherr, C., Silverman, D.H., Ratib, O. and Czernin, J. (2004) Impact of Patient Weight and Emission Scan Duration on PET/CT Image Quality and Lesion Detectability. Journal of Nuclear Medicine, 45, 797-801.
[10]
Masuda, Y., Kondo, C., Matsuo, Y., Uetani, M. and Kusakabe, K. (2009) Comparison of Imaging Protocols for 18F-FDG PET/CT in Overweight Patients: Optimizing Scan Duration Versus Administered Dose. Journal of Nuclear Medicine, 50, 844-848. https://doi.org/10.2967/jnumed.108.060590
[11]
Zeff, B.W. and Yester, M.V. (2005) Patient Self-Attenuation and Technologist Dose in Positron Emission Tomography. Medical Physics, 32, 861-865. https://doi.org/10.1118/1.1869552
[12]
Quinn, B., Holahan, B., Aime, J., Humm, J., St-Germain, J. and Dauer, L.T. (2012) Measured Dose Rate Constant from Oncology Patients Administered 18F for Positron Emission Tomography. Medical Physics, 39, 1071-1079. https://doi.org/10.1118/1.4749966
[13]
Yi, Y., Stabin, M.G., McKaskle, M.H., Shone, M.D. and Johnson, A.B. (2013) Comparison of Measured and Calculated Dose Rates Near Nuclear Medicine Patients. Health Physics, 105, 187-191. https://doi.org/10.1097/HP.0b013e318290cc0e
[14]
Wu, T.H., Liu, R.S., Dong, S.L., Chung, Y.W., Chou, K.L. and Lee, J.S. (2002) Dynamic Evaluation of Absorbed Dose to the Bladder Wall with a Ballon-Bladder Phantom during a Study Using 18-F Fluorodeoxyglucose Positron Emission Imaging. Nuclear Medicine Communications, 23, 749-755. https://doi.org/10.1097/00006231-200208000-00008
[15]
Accorsi, R., Karp, J.S. and Surti, S. (2010) Improved Dose Regimen in Pediatric PET. Journal of Nuclear Medicine, 51, 293-300. https://doi.org/10.2967/jnumed.109.066332
[16]
De Groot, E.H., Post, N., Boellaard, R., Wagenaar, N.R.L., Willemsen, A.T.M. and Van Dalen, J.A. (2013) Optimized Dose Regimen for Whole-Body FDG-PET Imaging. EJNMMI Research, 63, 1-11. https://doi.org/10.1186/2191-219X-3-63