The Taguchi method, based on an orthogonal arrangement (L9, 33), the vari-ance analysis, the signal-to-noise ratios and the response surface methodol-ogy have been used to optimize maximum flank wear (VBmax) and surface roughness (Ra) of the cutting tool when turning a hardened steel AISI D2 (65 HRC) with PVD—TiAlN coated WC insert upon dry environment. By em-ploying regression models; cutting speed, cutting depth and feed rate, which optimize maximum flank wear and surface roughness were validated. Results of relation signal-to-noise ratios, showed that with cutting speed of 200 m/min, cutting depth of 0.2 mm and feed rate of 0.20 mm/rev, Ra is opti-mized. With cutting speed of 150 m/min, cutting depth of 0.4 mm and feed rate of 0.3 mm/rev, VBmax is optimized. Through the variance analysis it was concluded that the depth of cut was the main parameter that affected on the surface roughness; whereas, the feed rate was the most influential parameter on the flank wear. Confirmation test results showed that the Taguchi method was very successful in the optimization of machining parameters for mini-mum surface roughness and flank wear in the turning of the D2 steel.
References
[1]
Asiltürk, I. and Akkus, H. (2011) Determining the Effect of Cutting Parameters on Surface Roughness in Hard Turning Using the Taguchi Method. Measurement: Journal of the International Measurement Confederation, 44, 1697-1704.
https://doi.org/10.1016/j.measurement.2011.07.003
[2]
Sahoo, A.K. and Sahoo, B. (2013) A Comparative Study on Performance of Multilayer Coated and Uncoated Carbide Inserts when Turning AISI D2 Steel under Dry Environment. Measurement: Journal of the International Measurement Confederation, 46, 2695-2704. https://doi.org/10.1016/j.measurement.2013.04.024
[3]
Zheng, G., Xu, R., Cheng, X., Zhao, G., Li, L. and Zhao, J. (2018) Effect of Cutting Parameters on Wear Behavior of Coated Tool and Surface Roughness in High-Speed Turning of 300M. Measurement: Journal of the International Measurement Confederation, 125, 99-108.
https://doi.org/10.1016/j.measurement.2018.04.078
[4]
Khan, S.A., Umar, M., Saleem, M.Q., Mufti, N.A. and Raza, S.F. (2018) Experimental Investigations on Wiper Inserts’ Edge Preparation, Workpiece Hardness and Operating Parameters in Hard Turning of AISI D2 Steel. Journal of Manufacturing Processes, 34, 187-196. https://doi.org/10.1016/j.jmapro.2018.06.004
[5]
Davim, J.P. and Figueira, L. (2007) Machinability Evaluation in Hard Turning of Cold Work Tool Steel (D2) with Ceramic Tools Using Statistical Techniques. Materials & Design, 28, 1186-1191. https://doi.org/10.1016/j.matdes.2006.01.011
[6]
Onuoha, O.J., Abu, J.O., Lawal, S.A., Mudiare, E. and Adeyemi, M.B. (2016) Determining the Effect of Cutting Fluids on Surface Roughness in Turning AISI 1330 Alloy Steel Using Taguchi Method. Modern Mechanical Engineering, 06, 51-59.
https://doi.org/10.4236/mme.2016.62006
[7]
Özel, T., Karpat, Y., Figueira, L. and Davim, J.P. (2007) Modelling of Surface Finish and Tool Flank Wear in Turning of AISI D2 Steel with Ceramic Wiper Inserts. Journal of Materials Processing Technology, 189, 192-198.
https://doi.org/10.1016/j.jmatprotec.2007.01.021
[8]
Sharma, J. and Sidhu, B.S. (2014) Investigation of Effects of Dry and near Dry Machining on AISI D2 Steel Using Vegetable Oil. Journal of Cleaner Production, 66, 619-623. https://doi.org/10.1016/j.jclepro.2013.11.042
[9]
Sahoo, A.K. and Sahoo, B. (2012) Experimental Investigations on Machinability Aspects in Finish Hard Turning of AISI 4340 Steel Using Uncoated and Multilayer Coated Carbide Inserts. Measurement: Journal of the International Measurement Confederation, 45, 2153-2165. https://doi.org/10.1016/j.measurement.2012.05.015
[10]
Shetty, R., Pai, R.B., Rao, S.S. and Nayak, R. (2009) Taguchi’s Technique in Machining of Metal Matrix Composites. The Journal of the Brazilian Society of Mechanical Sciences and Engineering, 31, 12-20.
https://doi.org/10.1590/S1678-58782009000100003
[11]
Lima, J.G., ávila, R.F., Abrão, A.M., Faustino, M. and Davim, J.P. (2005) Hard Turning: AISI 4340 High Strength Low Alloy Steel and AISI D2 Cold Work Tool Steel. Journal of Materials Processing Technology, 169, 388-395.
https://doi.org/10.1016/j.jmatprotec.2005.04.082
[12]
Chinchanikar, S. and Choudhury, S.K. (2015) Machining of Hardened Steel—Experimental Investigations, Performance Modeling and Cooling Techniques: A Review. International Journal of Machine Tools and Manufacture, 89, 95-109. https://doi.org/10.1016/j.ijmachtools.2014.11.002
[13]
Kivak, T. (2014) Optimization of Surface Roughness and Flank Wear Using the Taguchi Method in Milling of Hadfield Steel with PVD and CVD Coated Inserts. Measurement: Journal of the International Measurement Confederation, 50, 19-28.
https://doi.org/10.1016/j.measurement.2013.12.017
[14]
Sarikaya, M. and Güllü, A. (2014) Taguchi Design and Response Surface Methodology Based Analysis of Machining Parameters in CNC Turning under MQL. Journal of Cleaner Production, 65, 604-616.
https://doi.org/10.1016/j.jclepro.2013.08.040
[15]
Mandal, N., Doloi, B., Mondal, B. and Das, R. (2011) Optimization of Flank Wear Using Zirconia Toughened Alumina (ZTA) Cutting Tool: Taguchi Method and Regression Analysis. Measurement: Journal of the International Measurement Confederation, 44, 2149-2155. https://doi.org/10.1016/j.measurement.2011.07.022
[16]
Cetin, M.H., Ozcelik, B., Kuram, E. and Demirbas, E. (2011) Evaluation of Vegetable Based Cutting Fluids with Extreme Pressure and Cutting Parameters in Turning of AISI 304L by Taguchi Method. Journal of Cleaner Production, 19, 2049-2056.
https://doi.org/10.1016/j.jclepro.2011.07.013