Background:Preeclampsia is a worldwide pregnancy complication, and early identification of patients with an increased risk is one of the key goals in obstetrics. First trimester screening is crucial over the second trimester for understanding the early onset of the disorder, with basal levels of the biochemical parameters associated with the underlying placentation process. Objective: The study aims to assess the levels of serum biochemical markers in pregnant women at first trimester, to evaluate statistical significance and correlation of the values in support of trophoblastic cell integrity, endothelial function and oxidative stress. Materials and Methods: A longitudinal study was conducted on 86 pregnant women of age group 20 - 35 years, Primigravida with singleton pregnancy who visited prenatal check up between 11 - 13 weeks of gestation. Maternal sera was collected for screening Placental protein 13 (PP13), Caspase 3, Asymmetric dimethylarginine (ADMA), Nitric oxide (NO) by ELISA. Xanthine oxidase (XO) activity was assayed spectrophotometrically. Calcium and Uric acid (UA) were measured by dry chemistry analyser. Results: The mean ± SD values for mean arterial pressure (MAP) are 108.4 ± 18.9, UA 2.01 ± 0.85, Total oxidant status (TOS) 12.83 ± 5.17, Total antioxidant capacity (TAC) 24.10 ± 14.28, XO 1.01 ± 2.67, Caspase-3 1.76 ± 2.22, PP13 489.77 ± 53.6, Calcium 10.88 ± 1.97, ADMA 19.03 ± 17.08 and NO 1.16 ± 0.75. The statistical analysis by SPSS package version 20 revealed positive correlation between ADMA & Caspase-3 (r = +0.435), PP13 & NO (r = +0.241), TOS & TAC (r = +0.176), UA & ADMA (r = +0.176), UA & TAC (r = +0.168) and negative correlation between PP13 & ADMA (r = -0.158), NO & TOS (r = -0.114), UA & XO (r = -0.173), UA & NO (r = -0.186), UA & Caspase 3 (r = -0.106) and MAP & Calcium (r = -0.303). Conclusion: The study concludes that first trimester biochemical markers and their correlation predict the trophoblastic cell integrity and endothelial function during placentation under prevailing oxidative stress conditions, which may help in identifying women who subsequently go on to
References
[1]
Asiltas, B., Surmen-Gur, E. and Uncu, G. (2018) Prediction of First-Trimester Preeclampsia: Relevance of the Oxidative Stress Marker MDA in a Combination Model with PP-13, PAPP-A and Beta-HCG. Pathophysiology, 25, 131-135.
https://doi.org/10.1016/j.pathophys.2018.02.006
[2]
Duley, L. (2009) The Global Impact of Preeclampsia and Eclampsia. Seminars in Perinatology, 33, 130-137. https://doi.org/10.1053/j.semperi.2009.02.010
[3]
Hofmann, F., Straube, W. and Klausch, B. (1977) Pregnancy Proteins. Zentralblatt Fur Gynakologie, 99, 1601-1602.
[4]
Kroener, L., Wang, E.T. and Pisarska, M.D. (2016) Predisposing Factors to Abnormal First Trimester Placentation and the Impact on Fetal Outcomes. Seminars in Reproductive Medicine, 34, 27-35. https://doi.org/10.1055/s-0035-1570029
[5]
Nicolaides, K.H., Bindra, R., Turan, O.M., Chefetz, I., Sammar, M., Meiri, H., Tal, J. and Cuckle, H.S. (2006) A Novel Approach to the First Trimester Screening for Early Preeclampsia Combining Serum PP13 and Doppler Ultrasound. Ultrasound in Obstetrics & Gynecology, 27, 13-17. https://doi.org/10.1002/uog.2686
[6]
Chafetz, I., Kuhnreich, I., Sammar, M., Tal, Y., Gibor, Y., Meiri, H., et al. (2007) First-Trimester Placental Protein 13 Screening for Preeclampsia and Intrauterine Growth Restriction. American Journal of Obstetrics & Gynecology, 197, 35.e1-7.
https://doi.org/10.1016/j.ajog.2007.02.025
[7]
Huppertz, B. (2008) Placental Origins of Preeclampsia. Hypertension, 51, 970-975.
https://doi.org/10.1161/HYPERTENSIONAHA.107.107607
[8]
Straszewski-Chavez, S.L., Abrahams, V.M. and Mor, G. (2005) The Role of Apoptosis in the Regulation of Trophoblast Survival and Differentiation during Pregnancy. Endocrine Reviews, 26, 877-897. https://doi.org/10.1210/er.2005-0003
[9]
Cali, U., Cavkaytar, S., Sirvan, L. and Danisman, N. (2013) Placental Apoptosis in Preeclampsia, Intrauterine Growth Retardation, and HELLP Syndrome: An Immunohistochemical Study with Caspase-3 and Bcl-2. Clinical and Experimental Obstetrics & Gynecology, 40, 45-48.
[10]
Sharp, A.N., Heazell, A.E.P., Baczyk, D., Dunk, C.E., Lacey, H.A., Jones, C.P.J., et al. (2014) Preeclampsia Is Associated with Alterations in the p53-Pathway in Villous Trophoblast. PLoS ONE, 9, e87621. https://doi.org/10.1371/journal.pone.0087621
[11]
Ficking, S.A., Williams, D., Vallance, P., Nussey, S.S. and Whitley, G.S. (1993) Plasma of Endogenous Inhibitor of Nitric Acid Synthesis in Normal Pregnancy and Preeclampsia. Lancet, 342, 242-243. https://doi.org/10.1016/0140-6736(93)92335-Q
[12]
Holden, D.P., Ficking, S.A., Whitley, G.S. and Nussey, S.S. (1998) Plasma Concentrations of Asymmetric Dimethylarginine, a Natural Inhibitor of Nitric Oxide Syhthase, in Normal Pregnancy and Preeclampsia. American Journal of Obstetrics & Gynecology, 178, 551-556. https://doi.org/10.1016/S0002-9378(98)70437-5
[13]
Colonna, V.D.G., Bianchi, M., Pascale, V., Ferrario, P., Morelli, F., Pascale, W., et al. (2009) Asymmetric Dimethylarginine (ADMA): An Endogenous Inhibitor of Nitric Oxide Synthase and a Novel Cardiovascular Risk Molecule. Medical Science Monitor, 15, RA91-RA101.
[14]
Rijvers, C.A., Marzano, S., Winkens, B., Bakker, J.A., Kroon, A.A., Sspaanderman, M.E. and Peeters, L.L. (2013) Early-Pregnancy Asymmetric Dimethylarginine (ADMA) Levels in Women Prone to Develop Recurrent Hypertension. Pregnancy Hypertens, 3, 118-123. https://doi.org/10.1016/j.preghy.2013.01.001
[15]
Lopez-Alarcon, M., Montalvo-Velarde, I., Vital-Reyes, V.S., Hinojosa-Cruz, J.C., Leanos-Miranda, A. and Martinez-Basila, A. (2015) Serial Determinations of Asymmetric Dimethylarginine and Homocysteine during Pregnancy to Predict Pre-Eclampsia: A Longitudinal Study. BJOG, 122, 1586-1592.
https://doi.org/10.1111/1471-0528.13516
[16]
Krause, B.J., Hanson, M.A. and Casanello, P. (2011) Role of Nitric Oxide in Placental Vascular Development and Function. Placenta, 32, 797-805.
https://doi.org/10.1016/j.placenta.2011.06.025
[17]
Noorbakhsh, M., Kainpour, M. and Nematbakhsh, M. (2013) Serum Levels of Asymmetric Dimethylarginine, Vascular Endothelial Growth Factor, and Nitric Oxide Metabolite Levels in Preeclampsia Patients. ISRN Obstetrics and Gynaecology, 2013, Article ID: 104213. https://doi.org/10.1155/2013/104213
[18]
Zeng, Y., Li, M., Chen, Y. and Wang, S. (2015) Homocysteine, Endothelin-1 and Nitric Oxide in Patients with Hypertensive Disorders Complicating Pregnancy. International Journal of Clinical and Experimental Pathology, 8, 15275-15279.
[19]
Adu-Bonsaffoh, K., Antwi, D.A., Obed, S.A. and Gyan, B. (2015) Nitric Oxide Dysregulation in the Pathogenesis of Preeclampsia among Ghanaian Women. Integrated Blood Pressure Control, 8, 1-6. https://doi.org/10.2147/IBPC.S68454
[20]
Telfer, J.F., Thomson, A.J., Cameron, I.T., Greer, I.A. and Norman, J.E. (1997) Expression of Superoxide Dismutase and Xanthine Oxidase in Myometrium, Fetal Membranes and Placenta during Normal Human Pregnancy and Parturition. Human Reproduction, 12, 2306-2312. https://doi.org/10.1093/humrep/12.10.2306
[21]
Bambrana, V., Dayanand, C.D. and Kotur, P.P. (2015) Is Xanthine Oxidase, a Marker in Pre-Eclampsia? A Case-Control Study. Journal of Clinical and Diagnostic Research: JCDR, 9, BC01-BC03.
[22]
Bainbridge, S.A. and Roberts, J.M. (2008) Uric Acid as a Pathogenic Factor in Preeclampsia. Placenta, 29, S67-S72. https://doi.org/10.1016/j.placenta.2007.11.001
[23]
Vyakaranam, S., Bhongir, A.V., Patlolla, D. and Chintapally, R. (2015) Study of Serum Uric Acid and Creatinine in Hypertensive Disorders of Pregnancy. International Journal of Medical Science and Public Health, 4, 1424-1428.
https://doi.org/10.5455/ijmsph.2015.15042015294
[24]
Enaruna, N.O., Idemudia, J.O. and Aikoriogie, P.I. (2014) Serum Lipid Profile and Uric Acid Levels in Preeclampsia in University of Benin Teaching Hospita. Nigerian Medical Journal, 55, 423-427. https://doi.org/10.4103/0300-1652.140387
[25]
Baczyk, D., Kingdom, J.C. and Uhlen, P. (2011) Calcium Signalling in Placenta. Cell Calcium, 49, 350-356. https://doi.org/10.1016/j.ceca.2010.12.003
[26]
Than, N.G., Balogh, A., Romero, R., Karpati, E., Erez, O., Szilagyi, A., et al. (2014) Placental Protein 13 (PP13)—A Placental Immunoregulatory Galectin Protecting Pregnancy. Frontiers in Immunology, 5, 348.
https://doi.org/10.3389/fimmu.2014.00348
Imdad, A., Jabeen, A. and Bhutta, Z.A. (2011) Role of Calcium Supplementation during Pregnancy in Reducing Risk of Developing Gestational Hypertensive Disorders: A Meta-Analysis of Studies from Developing Countries. BMC Public Health, 11, S18. https://doi.org/10.1186/1471-2458-11-S3-S18
[29]
Gallo, D., Poon, L.C., Fernandez, M., Wright, D. and Nicolaides, K.H. (2014) Prediction of Preeclampsia by Mean Arterial Pressure at 11 - 13 and 20 - 24 Weeks’ Gestation. Fetal Diagnosis and Therapy, 36, 28-37. https://doi.org/10.1159/000360287
[30]
Tayyar, A., Krithinakis, K., Wright, A., Wright, D. and Nicolaides, K.H. (2016) Mean Arterial Pressure at 12, 22, 32 and 36 Weeks’ Gestation in Screening for Preeclampsia. Ultrasound in Obstetrics & Gynecology, 47, 573-579.
https://doi.org/10.1002/uog.15815
[31]
Ozturk, E., Balat, O., Acilmis, Y.C., Ozcan, C., Pence, S. and Erel, O. (2011) Measurement of the Placental Total Antioxidant Status in Preeclamptic Women Using a Novel Automated Method. Journal of Obstetrics and Gynaecology Research, 37, 337-342. https://doi.org/10.1111/j.1447-0756.2010.01346.x
[32]
Daglar, K., Kirbas, A., Timur, A., Ozturk, I.Z. and Danisman, N. (2016) Placental Levels of Total Oxidative and Anti-Oxidative Status, ADAMTA-12 and Decorin in Early- and Late-Onset Severe Preeclampsia. The Journal of Maternal-Fetal & Neonatal Medicine, 29, 4059-4064. https://doi.org/10.3109/14767058.2016.1154942
[33]
Rapoport, E.M. and Bovin, N.V. (2015) Specificity of Human Galectins on Cell Surfaces. Biochemistry, 80, 846-856.
[34]
Than, N.G., Sumegi, B., Than, G.N., Berente, Z. and Bohn, H. (1999) Isolation and Sequence Analysis of a cDNA Encoding Human Placental Tissue Protein 13 (PP13), a New Lysophospholipase, Homologue of Human Eosinophil Charcot-Leyden Crystal Protein. Placenta, 20, 703-710. https://doi.org/10.1053/plac.1999.0436
[35]
Huppertz, B., Meiri, H., Gizurarson, S., Osol, G. and Sammar, M. (2013) Placental Protein 13 (PP13): A New Biological Target Shifting Individualized Risk Assessment to Personalized Drug Design Combating Pre-Eclampsia. Human Reproduction, 19, 391-405. https://doi.org/10.1093/humupd/dmt003
[36]
Katz, E.D. and Ruoff, B.E. (2004) Commonly Used Formulas and Calculations. In: Roberts, J. and Hedges, J., Eds., Clinical Procedures in Emergency Medicine, 4th Edition, Elsevier Mosby Publishing, Philadelphia.
[37]
Park, H.J., Shim, S.S. and Cha, D.H. (2015) Combined Screening for Early Detection of Pre-Eclampsia. International Journal of Molecular Sciences, 16, 17952-17974.
https://doi.org/10.3390/ijms160817952
[38]
Ye, S., Zhou, X., Lin, J. and Chen, P. (2017) Asymmetric Dimethylarginine Induced Apoptosis and Dysfunction of Endotheial Progenitor Cells: Role of Endoplasmic Reticulum Stress Pathway. BioMed Research International, 2017, Article ID: 6395601. https://doi.org/10.1155/2017/6395601
[39]
Guo, W., Ding, J., Zhang, A., Dai, W., Liu, S., Diao, Z., et al. (2014) The Inhibitory Effect of Quercetin on Asymmetric Dimethylarginine-Induced Apoptosis Is Mediated by the Endoplasmic Reticulum Stress Pathway in Glomerular Endothelial Cells. International Journal of Molecular Sciences, 15, 484-503.
https://doi.org/10.3390/ijms15010484
[40]
Yuan, Q., Jiang, D.J., Chen, Q.Q., Wang, S., Xin, H.Y., Deng, H.W. and Li, Y.J. (2007) Role of Asymmetric Dimethylarginine in Homocysteine-Induced Apoptosis of Vascular Smooth Muscle Cells. Biochemical and Biophysical Research Communications, 356, 880-885. https://doi.org/10.1016/j.bbrc.2007.03.067
[41]
Jiang, D.J., Jia, S.J., Dai, Z. and Li, Y.J. (2006) Asymmetric Dimethylarginine Induces Apoptosis via p38 MAPK/Caspase-3-Dependent Signalling Pathway in Endothelial Cells. Journal of Molecular and Cellular Cardiology, 40, 529-539.
https://doi.org/10.1016/j.yjmcc.2006.01.021
[42]
Drobnjak, T., Gizurarson, S., Gokina, N.I., Meiri, H., Mandala, M., Huppertz, B. and Osol, G. (2017) Placental Protein 13 (PP13)—Induced Vasodilation of Resistance Arteries from Pregnant and Nonpregnant Rats Occurs via Endothelial—Signalling Pathways. Hypertension in Pregnancy, 36, 186-195.
https://doi.org/10.1080/10641955.2017.1295052
[43]
Gizurarson, S., Huppertz, B., Osol, G., Skarphedinsson, J.O., Mandala, M., et al. (2013) Effects of Placental Protein 13 on the Cardiovascular System in Gravid and Non-Gravid Rodents. Fetal Diagnosis and Therapy, 33, 257-264.
https://doi.org/10.1159/000345964
[44]
Gizurarson, S., Sigurdardottir, E.R., Meiri, H., Huppertz, B., Sammar, M., Sharabi-Nov, A., et al. (2016) Placental Protein 13 Administration to Pregnant Rats Lowers Blood Pressure and Augments Fetal Growth and Venous Remodeling. Fetal Diagnosis and Therapy, 39, 56-63. https://doi.org/10.1159/000381914
[45]
Myatt, L., Clifton, R.G., Roberts, J.M., Spong, C.Y., Hauth, J.C. and Varner, M.W. (2012) First-Trimester Prediction of Preeclampsia in Nulliparous Women at Low Risk. Obstetrics & Gynecology, 119, 1234-1242.
https://doi.org/10.1097/AOG.0b013e3182571669
[46]
Yilmaz, S.A., Ozgu-Erdinc, S., Demirtas, C., Ozturk, G., Erkaya, S. and Uygur, D. (2015) The Oxidative Stress Index Increases among Patients with Hyperemesis Gravidarum But Not in Normal Pregnancies. Redox Report, 20, 97-102.
https://doi.org/10.1179/1351000214Y.0000000110
[47]
Ramiro-Cortijo, D., Herrera, T., Rodriguez-Rodriguez, P., Lopez De Pablo, A.L., De La Calle, M., Lopez-Gimenez, M.R., et al. (2016) Maternal Plasma Antioxidant Status in the First Trimester of Pregnancy and Development of Obstetrics Complications. Placenta, 47, 37-45. https://doi.org/10.1016/j.placenta.2016.08.090
[48]
Laughon, S.K., Catov, J., Powers, R.W., Roberts, J.M. and Grandley, R.E. (2011) First Trimester Uric Acid and Adverse Pregnancy Outcomes. American Journal of Hypertension, 24, 489-495. https://doi.org/10.1038/ajh.2010.262
[49]
Nair, A. and Savitha, C. (2017) Estimation of Serum Uric Acid as an Indicator of Severity of Preeclampsia and Perinatal Outcome. Journal of Obstetrics and Gynaecology of India, 67, 109-118. https://doi.org/10.1007/s13224-016-0933-8
[50]
Powers, R.W., Speer, P.D., Frank, M.P., Harger, G., Markovic, N. and Roberts, J.M. (2008) Elevated Asymmetric Dimethylarginine Concentrations Precede Clinical Preeclampsia But Not Pregnancies with Small for Gestational Age Infants. American Journal of Obstetrics and Gynecology, 198, 112.e1-112.e7.
https://doi.org/10.1016/j.ajog.2007.05.052
[51]
Alpoim, P.N., Godoi, L.C., Freitas, L.G., Gomes, K.B. and Dusse, L.M. (2013) Assessment of L-Arginine Asymmetric 1 Dimethyl (ADMA) in Early-Onset and Late-Onset (Severe) Preeclampsia. Nitric Oxide, 33, 81-82.
https://doi.org/10.1016/j.niox.2013.07.006
[52]
Waring, W.S., Webb, D.J. and Maxwell, S.R. (2001) Systemic Uric Acid Administration Increases Serum Antioxidant Capacity in Healthy Volunteers. Journal of Cardiovascular Pharmacology, 38, 365-371.
https://doi.org/10.1097/00005344-200109000-00005
[53]
Muraoka, S. and Miura, T. (2003) Inhibition by Uric Acid of Free Radicals That Damage Biological Molecules. Pharmacology and Toxicology, 93, 284-289.
https://doi.org/10.1111/j.1600-0773.2003.pto930606.x
[54]
Robinson, K.M., Morre, J.T. and Beckman, J.S. (2004) Triuret: A Novel Product of Peroxynitrite-Mediated Oxidation of Urate. Archives of Biochemistry and Biophysics, 423, 213-217. https://doi.org/10.1016/j.abb.2003.10.011
[55]
Sueishi, Y., Hori, M., Kita, M. and Kotake, Y. (2011) Nitric Oxide (NO) Scavenging Capacity of Natural Antioxidants. Food Chemistry, 129, 866-870.
https://doi.org/10.1016/j.foodchem.2011.05.036
[56]
Maiuolo, J., Oppedisano, F., Gratteri, S., Muscoli, C. and Mollace, V. (2016) Regulation of Uric Acid Metabolism and Excretion. International Journal of Cardiology, 213, 8-14. https://doi.org/10.1016/j.ijcard.2015.08.109