We study galaxy distributions with Sloan Digital Sky Survey SDSS DR14 data and with simulations searching for variables that can constrain neutrino masses. To be specific, we consider the scenario of three active neutrino eigenstates with approximately the same mass, so Σmv=3mv. Fitting the predictions of the ΛCDM model to the Sachs-Wolfe effect, σ8, the galaxy power spectrum Pga1(k) , fluctuations of galaxy counts in spheres of radii ranging from 16/h to 128/h Mpc, Baryon Acoustic Oscillation (BAO) measurements, and h=0.678±0.009, in various combinations, with free spectral index n, and free galaxy bias and galaxy bias slope, we obtain consistent measurements of Σmv. The results depend on h, so we have presented confidence contours in the (Σmv, h) plane. A global fit with h=0.678±0.009 obtains eV, and the amplitude and spectral index of the power spectrum of linear density fluctuations P(k): , and n=1.021±0.075. The fit also returns the galaxy bias b including its scale dependence.
References
[1]
Sachs, R.K. and Wolfe, A.M. (1967) Perturbations of a Cosmological Model and Angular Variations of the Microwave Background. The Astrophysical Journal, 147, 73. https://doi.org/10.1086/148982
[2]
Steven Weinberg (2008) Cosmology. Oxford University Press, New York.
[3]
Patrignani, C., et al. (2016) Review of Particle Physics. Chinese Physics C, 40, 100001. https://doi.org/10.1088/1674-1137/40/10/100001
[4]
Anderson, L., et al. (2012) The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample. MNRAS, 427, 3435. https://doi.org/10.1111/j.1365-2966.2012.22066.x
[5]
Blanton, M.R., et al. (2017) Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe. The Astronomical Journal, 154, Article ID: 28.
[6]
Dawson, K.S., et al. (2013) The Baryon Oscillation Spectroscopic Survey of SDSS-III. The Astronomical Journal, 145, Article ID: 10.
[7]
Hoeneisen, B. (2017) Study of Baryon Acoustic Oscillations with SDSS DR13 Data and Measurements of and . International Journal of Astronomy and Astrophysics, 7, 11-27. https://doi.org/10.4236/ijaa.2017.71002
[8]
Hoeneisen, B. (2018) Constraints on Neutrino Masses from Baryon Acoustic Oscillation Measurements. International Journal of Astronomy and Astrophysics, 8, 1-5. https://doi.org/10.4236/ijaa.2018.81001
[9]
Lesgourgues J. and Pastor S. (2006) Massive Neutrinos and Cosmology. Physics Reports, 429, 307. https://doi.org/10.1016/j.physrep.2006.04.001
[10]
Feldman H.A., Kaiser N. and Peacock J.A. (1994) Power-Spectrum Analysis of Three-Dimensional Redshift Surveys. ApJ, 426, 23. https://doi.org/10.1086/174036
[11]
Peebles, P.J.E. (1980) The Large-Scale Structure of the Universe. Princeton University Press.
[12]
Hoeneisen, B. (2000) A Simple Model of the Hierarchical Formation of Galaxies. arXiv:astro-ph/0009071