Low-count SPECT images are
well known to be smoothed strongly by a Butterworth filter for statistical
noise reduction. Reconstructed images have a low signal-to-noise ratio (SNR)
and spatial resolution because of the removal of high-frequency signal
components. Using the developed robust adaptive bilateral filter (RABF), which
was designed as a pre-stage filter of the Butterworth filter, this study was
conducted to improve SNR without degrading the spatial resolution for low-count
SPECT imaging. The filter can remove noise while preserving spatial resolution.
To evaluate the proposed method, we extracted SNR and spatial resolution in a
phantom study. We also conducted paired comparison for
visual image quality evaluation in a clinical study. Results show that SNR
was increased 1.4 times without degrading the spatial resolution. Visual image
quality was improved significantly (p < 0.01) for clinical low-count data.
Moreover, the accumulation structure became sharper. A structure embedded in
noise emerged. Our method, which denoises without degrading the spatial
resolution for low-count SPECT images, is expected to increase the
effectiveness of diagnosis for low-dose scanning and short acquisition time
scanning.
References
[1]
Groch, M.W. and Erwin, W.D. (2000) SPECT in the Year 2000: Basic Principles. Journal of Nuclear Medicine Technology, 28, 233-244.
[2]
Minoshima, S., Maruno, H., Yui, N., Togawa, T., Kinoshita, F., Kubota, M., et al. (1993) Optimization of Butterworth Filter for Brain SPECT Imaging. Annals of Nuclear Medicine, 7, 71-77. https://doi.org/10.1007/BF03164571
[3]
David, R.G., Gilland, A.B., Yaghoobi, N., Firouzabady, H. and Rustgou, F. (1988) Determination of the Optimum Filter Function for SPECT Imaging. Journal of Nuclear Medicine, 29, 643-650.
[4]
Lyra, M. and Ploussi, A. (2011) Filtering in SPECT Image Reconstruction. International Journal of Biomedical Imaging, 2011, Article ID: 693795. https://doi.org/10.1155/2011/693795
[5]
Matsutomo, N., Tanaka, T., Nagaki, A. and Sasaki, M. (2014) Validation of Noise Reduction in Iterative Reconstruction: A Simulation Phantom Study. Nihon Hoshasen Gijutsu Gakkai Zasshi, 70, 773-783. https://doi.org/10.6009/jjrt.2014_JSRT_70.8.773
[6]
Sayed, I.S. and Mohamed Nasrudin, N.S. (2016) Effect of Cut-Off Frequency of Butterworth Filter on Detectability and Contrast of Hot and Cold Regions in Tc-99m SPECT. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 5, 100-109. https://doi.org/10.4236/ijmpcero.2016.51011
[7]
Tomasi, C. and Manduchi, R. (1998) Bilateral Filtering for Gray and Color Images. IEEE International Conference on Computer Vision, Bombay, 7 January 1998, 839-846. https://doi.org/10.1109/ICCV.1998.710815
[8]
Zhou, J., Zhu, H., Shu, H. and Luo, L. (2007) A Generalized Diffusion Based Inter-Iteration Nonlinear Bilateral Filtering Scheme for PET Image Reconstruction. Computerized Medical Imaging and Graphics, 31, 447-457. https://doi.org/10.1016/j.compmedimag.2007.04.003
[9]
Hofheinz, F., Langner, J., Beuthien-Baumann, B., Oehme, L., Steinbach, J., Kotzerke, J., et al. (2011) Suitability of Bilateral Filtering for Edge-Preserving Noise Reduction in PET. EJNMMI Research, 1, 1-9. https://doi.org/10.1186/2191-219X-1-23
[10]
Katayama, Y., Ueda, K., Hiura, S., Yamanaga, T., Miyoshi, H., Ohmura, M., et al. (2013) Bilateral Filter Applied to Bone Scintigraphy. Nihon Hoshasen Gijutsu Gakkai Zasshi, 69, 1363-1371. https://doi.org/10.6009/jjrt.2013_JSRT_69.12.1363
[11]
Buades, A., Coll, B. and Morel, J.-M. (2005) A Non-Local Algorithm for Image Denoising. IEEE International Conference on Computer Vision and Pattern Recognition, 2, 60-65.
[12]
Paris, S., Kornprobst, P., Tumblin, J. and Durand, F. (2008) Bilateral Filtering: Theory and Applications. Foundations and Trends in Computer Graphics and Vision, 4, 1-73. https://doi.org/10.1561/0600000020
[13]
Maeda, H., Yamaki, N. and Azuma, M. (2012) Development of the Software Package of the Nuclear Medicine Data Processor for Education and Research. Nihon Hoshasen Gijutsu Gakkai Zasshi, 68, 299-306. https://doi.org/10.6009/jjrt.2012_JSRT_68.3.299
[14]
Nagasawa, S. (2002) Improvement of the Scheffe’s Method for Paired Comparisons. Kansei Engineering International, 3, 47-56. https://doi.org/10.5057/kei.3.3_47
[15]
Hideyuki, T. (2014) Practical Statistical Tests Machine Learning (3) Significance Tests for Human Subjective Tests. Systems, Control and Information, 58, 514-520.