A detailed analysis of the
influence of Rydberg states to the behavior of GPS satellite signals in the D
and E atmospheric layers has been carried out. It is demonstrated that these
states are the main reason for the GPS signal distortion. It is shown that the
behavior of satellite signals is associated with the spectral characteristics
of the UHF radiation of the Rydberg states depending on the geomagnetic
conditions of ionosphere. The foundations of the quantum theory of distortion
and delay of GPS satellite signal propagation through
D and E atmospheric layers are analyzed and expounded. The problem reduces to
the resonant scattering of photons, moving in the electromagnetic field
of the signal, to the Rydberg complexes populated in a two-temperature
non-equilibrium plasma. The processes of creation of additional photons because
of stimulated emission and resonance scattering of photons are considered. In
the present work, the quantum theory of the propagation of a satellite signal
in the Earth’s upper atmosphere, firstly earlier proposed by the same authors,
is described in detail. The general problems of the theory and possible
theoretical and applied consequences are discussed. It is explained that two
main processes occurring here, are directly related to the resonant quantum
properties of the propagation medium. The first process leads to a direct
increase in the power of the received signal, and second—to a shift in the
signal carrier frequency??and the time
delay??of its
propagation. The main reasons of the processes are scattering of the Rydberg
electron by the ion core and presence of the neutral medium molecule in the
intermediate autoionization states of the composite system populated by the
strong non-adiabatic coupling of electron and nuclear motions. The main
purposes of our investigation are the physical justification of the formation
of parameters ?and?
References
[1]
Zumberg, J.F., Heftin, M.B., Jeffersonet, D.C., et al. (1997) Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks. Journal of Geophysical Research: Solid Earth, 102, 5005-5017.
https://doi.org/10.1029/96JB03860
[2]
Wang, W.J., Hsu, T.M. and Wu, T.S. (2017) The Improved Pure Pursuit Algorithm for Autonomous Driving Advanced System. IEEE 10th International Workshop on Computational Intelligence and Applications (IWCIA), Hiroshima, 11-12 November 2017, 33-38. https://doi.org/10.1109/IWCIA.2017.8203557
[3]
Eppelbaum, L.V. (2013) Non-Stochastic Long-Term Prediction Model for US Tornado Level. Natural Hazards, 69, 2269-2278.
https://doi.org/10.1007/s11069-013-0787-7
[4]
Kaplan, E.D. and Hegarty C.J. (2006) Understanding GPS Principles and Applications. 2nd Edition, Artech House, Norwood.
[5]
Finkelstein, M., Price, C. and Eppelbaum, L. (2012) Is the Geodynamic Process in Preparation of Strong Earthquakes Reflected in the Geomagnetic Field? Journal of Geophysics and Engineering, 9, 585-594. https://doi.org/10.1088/1742-2132/9/5/585
[6]
Eppelbaum, L.V. (2011) Study of Magnetic Anomalies over Archaeological Targets in Urban Conditions. Physics and Chemistry of the Earth, 36, 1318-1330.
https://doi.org/10.1016/j.pce.2011.02.005
[7]
Eppelbaum, L.V. and Mishne, A.R. (2011) Unmanned Airborne Magnetic and VLF investigations: Effective Geophysical Methodology of the Near Future. Positioning, 2, 112-133. https://doi.org/10.4236/pos.2011.23012
[8]
Eppelbaum, L.V., Katz, Y.I. and Ben-Avraham, Z. (2012) Israel—Petroleum Geology and Prospective Provinces. AAPG European Newsletter, 4, 4-9.
[9]
Rampinini, E., Alberti, G., Fiorenza, M., Riggio, M., Sassi, R., Borges, T.O. and Coutts, A.J. (2004) Accuracy of GPS Devices for Measuring High-Intensity Running in Field-Based Team Sports. International Journal of Sports Medicine, 36, 49-53.
[10]
Eppelbaum, L.V. and Katz, Y.I. (2015) Paleomagnetic Mapping in Various Areas of the Easternmost Mediterranean Based on an Integrated Geological-Geophysical Analysis. In: Eppelbaum, L., Ed., New Developments in Paleomagnetism Research, Ser: Earth Sciences in the 21st Century, Nova Science Publisher, New York, 15-52.
[11]
Eppelbaum, L.V. (2016) Remote Operated Vehicles Geophysical Surveys in Air Land (Underground) and Submarine Archaeology: General Peculiarities of Processing and Interpretation. Translation of the 12th EUG Meeting: Geophysical Research Abstracts, Vol. 18, Vienna, 17-22 April 2016, 1-7.
[12]
Cerruti, A.P., Kintner Jr., P.M., Gary, D.E., et al. (2008) Effect of Intense December 2006 Solar Radio Bursts on GPS Receivers. Space Weather, 6, 1-10.
https://doi.org/10.1029/2007SW000375
[13]
http://gps.ece.cornell.edu/realtime.php
[14]
Afraimovich, E.L., Astafieva, E.I., Berngardt, O.I., et al. (2004) Mid-Latitude Amplitude Scintillation of GPS Signals and GPS Performance Slips at the Auroral Oval Boundary. Radiophysics and Quantum Electronics, 47, 453-468.
https://doi.org/10.1023/B:RAQE.0000047237.67771.bc
[15]
Golubkov, G.V., Golubkov, M.G. and Manzhelii, M.I. (2012) Microwave and IR Radiation of the Upper Atmosphere during Periods of Enhanced Solar Activity. Doklady Physics, 57, 461-464. https://doi.org/10.1134/S102833581212004X
[16]
Montenbruck, O. and Markgraf, M. (2001) Orion GPS Tracking System. Flight Report Max4-DLR-RP-0001.
Hauschild, A., Markgraf, M. and Montenbruck, O. (2014) The Navigation and Occultation Experiment GPS Receiver on Board a LEO Satellite. Inside GNSS, 9, 49-57.
[19]
Golubkov, G.V., Manzhelii, M.I. and Karpov, I.V. (2013) Ultrahigh Frequency Additional Background Radiation of the Lower Ionosphere during Strong Geomagnetic Disturbances. Russian Jour. of Physical Chemistry B, 7, 641-651.
https://doi.org/10.1134/S1990793113050175
[20]
http://gps.ece.cornell.edu/x6flare.php
[21]
Golubkov, G.V., Manzhelii, M.I. and Karpov, I.V. (2011) Chemical Physics of the Upper Atmosphere. Russian Journal of Physical Chemistry B, 5, 406-411.
https://doi.org/10.1134/S1990793111030055
[22]
Golubkov, G.V. (2011) Influence of the Medium on the Electromagnetic Radiation Spectrum of Highly Excited Atoms and Molecules. Russian Journal of Physical Chemistry B, 5, 925-930. https://doi.org/10.1134/S1990793111060108
[23]
Golubkov, G.V., Golubkov, M.G. and Manzhelii, M.I. (2012) Microwave Radiation in the Upper Atmosphere of the Earth during Strong Geomagnetic Disturbances. Russian Journal of Physical Chemistry B, 6, 112-127.
https://doi.org/10.1134/S1990793112010186
[24]
Golubkov, G.V., Golubkov, M.G. and Manzhelii, M.I. (2013) Additional Background Radiation of Atmosphere D-Layer at 0.8 to 6.0 GHz. Doklady Physics, 58, 424-427. https://doi.org/10.1134/S1028335813100066
[25]
Golubkov, G.V., Golubkov, M.G. and Manzhelii, M.I. (2014) Rydberg States in the Atmosphere D Layer and GPS System Positioning Errors. Russian Journal of Physical Chemistry B, 8, 103-115. https://doi.org/10.1134/S1990793114010126
[26]
Golubkov, G.V., Golubkov, M.G., Manzhelii, M.I. and Karpov, I.V. (2014) Optical Quantum Properties of GPS Signal Propagation Medium—D layer. In: Bychkov, V.L., Golubkov, G.V. and Nikitin, A.I., Eds., The Atmosphere and Ionosphere: Elementary Processes, Monitoring, and Ball Lighting, Springer, New York, 1-68.
https://doi.org/10.1007/978-3-319-05239-7_1
[27]
Ashby, N. (2002) Relativity and the Global Positioning System. Physics Today, 55, 41-47. http://www.livingreviews.org/lrr-2003-1
https://doi.org/10.1063/1.1485583
[28]
Langley, R.B. (2000) GPS, the Ionosphere, and the Solar Maximum. GPS World, 11, 44-49.
[29]
Golubkov, G.V., Manzhelii, M.I. and Eppelbaum, L.V. (2018) Quantum Theory of Disturbance and Delay of GPS Signals in D and E Atmospheric Layers: An Introduction. Positioning, 9, 13-22. https://doi.org/10.4236/pos.2018.92002
[30]
Buenker, R.J., Golubkov, G.V., Golubkov, M.G., et al. (2013) Relativity Laws for the Variation of Rates of Clocks Moving in Free Space and GPS Positioning Errors Caused by Space-Weather Events. In: Mohamed, A.H., Ed., Global Navigation Satellite Systems—From Stellar to Satellite Navigation, INTECH, Amsterdam, London, New York, 1-48.
[31]
Klobuchar, J. (1987) Ionospheric Time-Delay Algorithms for Single-Frequency GPS users. IEEE Transactions on Aerospace and Electronic Systems, 3, 325-331.
https://doi.org/10.1109/TAES.1987.310829
[32]
Landau, L.D. and Lifshitz, E.M. (1984) Electrodynamics of Continuous Media. Pergamon Press, Oxford.
[33]
Avakyan, S.V. (2008) Physics of the Solar-Terrestrial Coupling: Results, Problems, and New Approaches. Geomagnetism and Aeronomy, 48, 417-424.
https://doi.org/10.1134/S0016793208040014
[34]
Golubkov, G.V., Golubkov, M.G. and Ivanov, G.K. (2010) Rydberg States of Atoms and Molecules in a Field of Neutral Particles. In: Bychkov, V.L., Golubkov, G.V. and Nikitin, A.I., Eds., The Atmosphere and Ionosphere: Dynamics, Processes and Monitoring, Springer, New York, 1-67.
https://doi.org/10.1007/978-90-481-3212-6_1
[35]
Jacobsen, K.S., Pedersen, A., Moen, J.I., et al. (2010) A New Langmuir Probe Concept for Rapid Sampling of Space Plasma Electron Density. Measurement Science & Technology, 21, Article ID: 085902. https://doi.org/10.1088/0957-0233/21/8/085902
[36]
Rurihara, J., Abe, T., Oyama, K., et al. (2006) Observation of the Lower Thermospheric Neutral Temperature and Density in the DELTA Campaign. Earth, Planets and Space, 58, 1123-1130. https://doi.org/10.1186/BF03352001
[37]
Oyama, K.I., Abe, T., Mori, H. and Liu, J.Y. (2008) Electron Temperature in Nighttime Sporadic E Layer at Mid-Latitude. Annales Geophysicae, 26, 533-541.
https://www.ann-geophys.net/26/533/2008/Ann.Ge
https://doi.org/10.5194/angeo-26-533-2008
[38]
Golubkov, G.V. and Ivanov, G.K. (2001) Nonadiabatic Effects in Rydberg Molecular States and Their Manifestation in Collision Processes. Chemical Physics Reports, 19, 549-571.
[39]
Mlynczak, M.G., Johnson, D.G., Latvakovski. H., et al. (2006) First Light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) Instrument. Geophysical Research Letters, 33, L07704. https://doi.org/10.1029/2005GL025114
[40]
Golubkov, G.V., Manzhelii, M.I., Berlin, A.A. and Lushnikov, A.A. (2014) Fundamentals of Radio-Chemical Physics of the Earth’s Atmosphere. Russian Journal of Physical Chemistry B, 10, 77-90. https://doi.org/10.1134/S1990793116010024
[41]
Berestetskii, V.B., Lifshitz, E.M. and Pitaevskii, L.P. (1982) Quantum Electrodynamics. Pergamon Press, New York.
[42]
Golubkov, G.V. and Golubkov, M.G. (2014) Perturbation of Highly Excited States of an Atom by the Field of a Neutral Particle. Russian Journal of Physical Chemistry B, 8, 35-44. https://doi.org/10.1134/S1990793114010114
[43]
Golubkov, G.V. and Ivanov, G.K. (2001) Rydberg States of Atoms and Molecules and Elementary Processes with their Participation. URSS, Moscow.
[44]
Biberman, L.M., Vorob’ev, V.S. and Yakubov, I.T. (1987) Kinetics of Nonequilibriun Low-Temperature Plasmas. Springer, New York.
https://doi.org/10.1007/978-1-4684-1665-7
[45]
Svanberg, S. (2001) Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications. Springer, New York. https://doi.org/10.1007/978-3-642-98107-4
[46]
Golubkov, G.V., Devdariani, A.Z. and Golubkov, M.G. (2002) Collision of Rydberg Atom A** with Atom B in the Ground Electronic State. Optical Potential. Journal of Experimental and Theoretical Physics, 95, 987-997.
https://doi.org/10.1134/1.1537291
[47]
Golubkov, G.V. and Ivanov, G.K. (1984) Near-Threshold Photoionization Theory for Diatomic Molecules. Journal of Physics B: Atomic and Molecular Physics, 17, 747-761. https://doi.org/10.1088/0022-3700/17/5/016
[48]
Balashov, E.M., Golubkov, G.V. and Ivanov, G.K. (1984) Radiative Transitions between Rydberg States of Molecules. Journal of Experimental and Theoretical Physics, 59, 1188-1194.
[49]
Lushnikov, A.A. and Maksimenko, V.V. (1993) Quantum Optics of a Metallic Particle. Journal of Experimental and Theoretical Physics, 76, 497-513.