A simplified version of the quantum teleportation
protocol is presented in here. Its experimental confirmation will have deep
implications for a better understanding of Quantum Entanglement with a
particular projection on Quantum Communications.
References
[1]
Jaeger, G. (2009) Entanglement, Information, and the Interpretation of Quantum Mechanics. The Frontiers Collection. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-540-92128-8
[2]
Schrodinger, E. (1935) Die Gegenwaertige Situation in der Quantenmechanik. Die Naturwissenschaften, 23, 807-812. https://doi.org/10.1007/BF01491891
[3]
Schrodinger, E. (1935) Discussion of Probability Relations between Separated Systems. Proceedings of Cambridge Philosophical Society, 32, 446-452. https://doi.org/10.1017/S0305004100019137
[4]
Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777-780. https://doi.org/10.1103/PhysRev.47.777
[5]
Audretsch, J. (2007) Entangled Systems: New Directions in Quantum Physics. Wiley-VCH Verlag GmbH & Co, Weinheim. https://doi.org/10.1002/9783527619153
[6]
Einstein, A., Lorentz, H.A., Minkowski, H. and Weyl, H. (1952) The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity. Courier Dover Publications, New York.
[7]
Herbert, N. (1982) FLASH—A Superluminal Communicator Based upon a New Kind of Quantum Measurement. Foundations of Physics, 12, 1171-1179. https://doi.org/10.1007/BF00729622
[8]
Eberhard, P.H. and Ross, R.R. (1989) Quantum Field Theory Cannot Provide Faster-than-Light Communication. Foundations of Physics Letters, 2, 127-149. https://doi.org/10.1007/BF00696109
[9]
Bell, J. (1964) On the Einstein Podolsky Rosen Paradox. Physics, 1, 195. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
[10]
Vaidman, L. (2014) Quantum Theory and Determinism. Quantum Studies: Mathematics and Foundations, 1, 5-38. https://doi.org/10.1007/s40509-014-0008-4
[11]
Dieks, D. (1982) Communication by EPR Devices. Physics Letters A, 92, 271-272. https://doi.org/10.1016/0375-9601(82)90084-6
[12]
Ghirardi, G.C., Grassi, R., Rimini, A. and Weber, T. (1988) Experiments of the EPR Type Involving CP-Violation Do Not Allow Faster-than-Light Communication between Distant Observers. Europhysics Letters, 6, 95-100. https://doi.org/10.1209/0295-5075/6/2/001
[13]
Aspect, A., Grangier, P., Roger, G. (1982) Experimental Realization of Einstein- Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Physical Review Letters, 49, 91-94. https://doi.org/10.1103/PhysRevLett.49.91
[14]
Clauser, J.F., Horne, M.A., Shimony, A. and Holt, R.A. (1969) Proposed Experiment to Test Local Hidden-Variable Theories. Physical Review Letters, 23, 880-884. https://doi.org/10.1103/PhysRevLett.23.880
[15]
Hanson, R. (2005) Loophole-Free Bell Inequality Violation Using Electron Spins Separated by 1.3 Kilometers. Nature, 526, 682-686. https://doi.org/10.1038/nature15759
[16]
Wootters, W.K. and Zurek, W.H. (1982) A Single Quantum Cannot Be Cloned. Nature, 299, 802-803. https://doi.org/10.1038/299802a0
[17]
Bennett, C.H., Brassard, G., Grepeau, C. and Jozsa, R. (1993) Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Physical Review Letters, 70, 1895-1899. https://doi.org/10.1103/PhysRevLett.70.1895
[18]
Bouwmeester, D., et al. (1997) Experimental Quantum Teleportation. Nature, 390, 575-579. https://doi.org/10.1038/37539
[19]
Boschi, D., et al. (1998) Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Physical Review Letters, 80, 1121-1125. https://doi.org/10.1103/PhysRevLett.80.1121
[20]
Schlosshauer, M. (2005) Decoherence, the Measurement Problem, and Interpretations of Quantum Mechanics. Reviews of Modern Physics, 76, 1267-1305. https://doi.org/10.1103/RevModPhys.76.1267
[21]
Busch, P., Lahti, P., Pellonpaa, J.P. and Ylinen, K. (2016) Quantum Measurement. Springer, New York. https://doi.org/10.1007/978-3-319-43389-9
[22]
Mastriani, M. (2018) Optimal Estimate of Quantum States. Journal of Applied Mathematics and Physics, 6, 1363-1381. https://doi.org/10.4236/jamp.2018.66114
[23]
Mastriani, M. (2018) Quantum Communications, Relativistic Entanglement and the Theory of Dilated Locality.
[24]
Nielsen, M.A. and Chuang, I.L. (2004) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge.
[25]
Bang, J., Ryu, J. and Kaszlikowski, D. (2018) Fidelity Deviation in Quantum Teleportation. Journal of Physics A: Mathematical and Theoretical, 51, Article ID: 135302.
[26]
Hofmann, H.F., Ide, T., Kobayashi, T. and Furusawa, A. (2000) Fidelity and Information in the Quantum Teleportation of Continuous Variables. Physical Review A, 62, Article ID: 062304.
[27]
Oh, S., Lee, S. and Lee, H.W. (2002) Fidelity of Quantum Teleportation through Noisy Channels. Physical Review A, 66, Article ID: 022316. https://doi.org/10.1103/PhysRevA.66.022316
[28]
Kiktenko, E.O., Fedorov, A.K. and Manko, V.I. (2016) Teleportation in an Indivisible Quantum System. Quantum Measurements and Quantum Metrology, 3, 15.
[29]
Kiktenko, E.O., Popov, A.A. and Fedorov, A.K. (2016) Bidirectional Imperfect Quantum Teleportation with a Single Bell State. Physical Review A, 93, Article ID: 062305.
[30]
Bennett, C.H. and Brassard, G. (1984) Quantum Cryptography: Public Key Distribution and Coin Tossing. IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, 9-12 December 1984, 175-179.
[31]
Anderson, R. and Brady, R. (2013) Why Quantum Computing Is Hard and Quantum Cryptography Is Not Probably Secure.
[32]
Cariolaro, G. (2015) Quantum Communications. Springer International Publishing, New York. https://doi.org/10.1007/978-3-319-15600-2
[33]
Mishra, V.K. (2016) An Introduction to Quantum Communication. Momentum Press, New York.
[34]
Imre, S. and Gyongyosi, L. (2012) Advanced Quantum Communications: An Engineering Approach. Wiley—IEEE Press, New York. https://doi.org/10.1002/9781118337462
[35]
Kimble, H.J. (2018) The Quantum Internet. Nature, 453, 1023-1030. https://doi.org/10.1038/nature07127
[36]
Wehner, S. (2018) The Quantum Internet Has Arrived (and It Hasn’t): Networks That Harness Entanglement and Teleportation Could Enable Leaps in Security, Computing and Science. Nature, 554, 289-292. https://www.nature.com/articles/d41586-018-01835-3
[37]
Hotta, M., Matsumoto, J. and Yusa, G. (2010) Energy Entanglement Relation for Quantum Energy Teleportation. Physics Letters A, 374, 3416-3421.
[38]
Hotta, M. (2014) Quantum Energy Teleportation without Limit of Distance. Physical Review A, 89, Article ID: 012311.