Commercial peanut cultivars in the USA are often grown under soil and environmental conditions resulting in intermittent periods of water deficit. Two plant traits have been identified that result in conservative use of water and allow sustained growth during drought: (1) restricted transpiration rate under high atmospheric vapor pressure deficit (VPD) and (2) earlier closure of stomata in the soil-drying cycle resulting in decreased daily transpiration rate. The objective of this study was to investigate whether there was diversity in these two putative traits for drought resistance among nine US commercial peanut cultivars. When the response to VPD was measured at an average temperature of C, eight of the nine cultivars expressed a restricted transpiration rate at high VPD. However, at C none of the cultivars exhibited a restriction of transpiration rate at high VPD. No differences were found among the nine cultivars in their response to soil drying. 1. Introduction Peanut (Arachis hypogaea L.) is often grown under rainfed conditions on soils with limited water-holding capacity. Hence, an ability to sustain development and growth under water deficit is important for commercial cultivars. While studies have examined traits to enhance peanut performance under water-limited conditions, there is no report specifically on genetic variability among cultivars used commercially in southeast USA. This study was designed to examine specific drought-tolerant traits in nine commercial peanut cultivars. One putative drought-tolerant trait is to limit transpiration rate by having a decreased stomatal conductance under conditions when atmospheric vapor pressure deficit (VPD) is high [1, 2]. Without sensitivity to increasing VPD, plants will have continually increasing transpiration rates with increasing VPD [3]. One possibility, however, is for plants to limit transpiration to a maximum rate when VPD becomes high. Such behavior is observed as midday stomata closure. This trait has the benefit of conserving soil water during periods of high VPD so that it might be available for use later in the season if soil water deficits develop. Such a response of transpiration to VPD has been previously identified in some genotypes of soybean (Glycine max (Merr.) L.) [4–6], sorghum (Sorghum biocolor L.) [7], and pearl millet (Pennisetum glaucum (L.) R.Br) [8]. A sensitivity of transpiration to VPD has also been recently reported in peanut. Jyostna Devi et al. [9] studied seventeen peanut breeding lines and commercial lines used in India. They found that nine of the lines had a
References
[1]
I. R. Cowan, “Transport of water in the soil-plant-atmosphere system,” Journal of Applied Ecology, vol. 2, pp. 221–239, 1965.
[2]
F. Tardieu, J. Zhang, N. Katerji, O. Bethenod, S. Palmer, and W. J. Davies, “Xylem ABA controls the stomatal conductance of fieldgrown maized subjected to soil compaction or soil drying,” Plant, Cell and Environment, vol. 15, pp. 193–197, 1992.
[3]
T. R. Sinclair and J. M. Bennett, “Water,” in Principles of Ecology in Plant Production, T. R. Sinclair and F. P. Gardner, Eds., pp. 103–120, CAB International, 1998.
[4]
A. L. Fletcher, T. R. Sinclair, and L. H. Allen Jr., “Transpiration responses to vapor pressure deficit in well watered “slow-wilting” and commercial soybean,” Environmental and Experimental Botany, vol. 61, no. 2, pp. 145–151, 2007.
[5]
T. R. Sinclair, M. A. Zwieniecki, and N. M. Holbrook, “Low leaf hydraulic conductance associated with drought tolerance in soybean,” Physiologia Plantarum, vol. 132, no. 4, pp. 446–451, 2008.
[6]
W. Sadok and T. R. Sinclair, “Genetic variability of transpiration response to vapor pressure deficit among soybean cultivars,” Crop Science, vol. 49, no. 3, pp. 955–960, 2009.
[7]
M. Gholipoor, P. V. V. Prasad, R. N. Mutava, and T. R. Sinclair, “Genetic variability of transpiration response to vapor pressure deficit among sorghum genotypes,” Field Crops Research, vol. 119, no. 1, pp. 85–90, 2010.
[8]
J. Kholova, C. T. Hash, P. L. Kumar, R. S. Yadav, M. Koová, and V. Vadez, “Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit,” Journal of Experimental Botany, vol. 61, no. 5, pp. 1431–1440, 2010.
[9]
M. Jyostna Devi, T. R. Sinclair, and V. Vadez, “Genotypic variation in peanut for transpiration response to vapor pressure deficit,” Crop Science, vol. 50, no. 1, pp. 191–196, 2010.
[10]
J. T. Ritchie, “Soil water availability,” Plant and Soil, vol. 58, no. 1–3, pp. 327–338, 1981.
[11]
T. R. Sinclair and M. M. Ludlow, “Influence of soil water supply on the plant water balance of four tropical grain legumes,” Australian Journal of Plant Physiology, vol. 13, no. 3, pp. 329–341, 1986.
[12]
J. D. Ray and T. R. Sinclair, “Stomatal closure of maize hybrids in response to drying soil,” Crop Science, vol. 37, no. 3, pp. 803–807, 1997.
[13]
J. D. Ray and T. R. Sinclair, “The effect of pot size on growth and transpiration of maize and soybean during water deficit stress,” Journal of Experimental Botany, vol. 49, no. 325, pp. 1381–1386, 1998.
[14]
R. Serraj, T. R. Sinclair, and L. C. Purcell, “Symbiotic N2 fixation response to drought,” Journal of Experimental Botany, vol. 50, no. 331, pp. 143–155, 1999.
[15]
P. Bhatnagar-Mathur, M. J. Devi, D. S. Reddy et al., “Stress-inducible expression of at DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions,” Plant Cell Reports, vol. 26, no. 12, pp. 2071–2082, 2007.
[16]
P. Bhatnagar-Mathur, V. Vadez, M. Jyostna Devi, M. Lavanya, G. Vani, and K. K. Sharma, “Genetic engineering of chickpea (Cicer arietinum L.) with the P5CSF129A gene for osmoregulation with implications on drought tolerance,” Molecular Breeding, vol. 23, no. 4, pp. 591–606, 2009.
[17]
W. S. Meyer and G. C. Green, “Plant indicators of wheat and soybean crop water stress,” Irrigation Science, vol. 2, no. 3, pp. 167–176, 1981.
[18]
T. Gollan, J. B. Passioura, and R. Munns, “Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves,” Australian Journal of Plant Physiology, vol. 13, pp. 459–464, 1986.
[19]
W. D. Rosenthal, G. F. Arkin, and W. R. Jordan, “Water deficit effects on transpiration and leaf growth,” Agronomy Journal, vol. 79, pp. 1019–1026, 1987.
[20]
B. I. L. Kuppers, M. Kuppers, and E. D. Schulze, “Soil drying and its effect on leaf conductance and CO2 assimilation of Vigna unguiculata (L.) Walp I. The response to climatic factors and to the rate of soil drying in young plants,” Oecologia, vol. 75, no. 1, pp. 99–104, 1988.
[21]
R. Weisz, J. Kaminski, and Z. Smilowitz, “Water deficit effects on potato leaf growth and transpiration: utilizing fraction extractable soil water for comparison with other crops,” American Potato Journal, vol. 71, no. 12, pp. 829–840, 1994.
[22]
V. O. Sadras and S. P. Milroy, “Soil-water thresholds for the responses of leaf expansion and gas exchange: a review,” Field Crops Research, vol. 47, no. 2-3, pp. 253–266, 1996.
[23]
M. Jyostna Devi, T. R. Sinclair, V. Vadez, and L. Krishnamurthy, “Peanut genotypic variation in transpiration efficiency and decreased transpiration during progressive soil drying,” Field Crops Research, vol. 114, no. 2, pp. 280–285, 2009.
[24]
“Inoculation methods for field experimenters and farmers,” in Nitrogen Fixation in Legumes, J. Brockwell, Ed., pp. 211–221, 1982.
[25]
T. Henzler and E. Steudle, “Reversible closing of water channels in Chara internodes provides evidence for a composite transport model of the plasma membrane,” Journal of Experimental Botany, vol. 46, no. 283, pp. 199–209, 1995.
[26]
M. Tazawa, E. Ohkuma, M. Shibasaka, and S. Nakashima, “Mercurial-sensitive water transport in barley roots,” Journal of Plant Research, vol. 110, no. 1100, pp. 435–442, 1997.
[27]
W. H. Zhang and S. D. Tyerman, “Inhibition of water channels by HgCl2 in intact wheat root cells,” Plant Physiology, vol. 120, no. 3, pp. 849–857, 1999.
[28]
C. Maurel and M. J. Chrispeels, “Aquaporins. A molecular entry into plant water relations,” Plant Physiology, vol. 125, no. 1, pp. 135–138, 2001.
[29]
I. F. Ionenko, A. V. Anisimov, and N. R. Dautova, “Effect of temperature on water transport through aquaporins,” Biologia Plantarum, vol. 54, no. 3, pp. 488–494, 2010.