全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Removal of Acid Yellow 25 from Aqueous Solution by Chitin Prepared from Waste Snow Crab Legs

DOI: 10.4236/jeas.2018.83007, PP. 139-155

Keywords: Acid Yellow 25, Chitin, Adsorption Kinetics, Adsorption Isotherm

Full-Text   Cite this paper   Add to My Lib

Abstract:

Acid Yellow 25 (AY25) is used in the textile industry for dyeing of natural and synthetic fibers, and is also used as a coloring agent in paints, inks, plastics, and leathers. Effluents from such industries are major sources of water pollution. Hence, it is important to find simple, efficient, and inexpensive ways to remove these dyes from wastewater. Here, we determined the suitability of chitin extracted from waste crab legs as an adsorbent for removing AY25 dye. The adsorption kinetics was modeled using pseudo-first order, pseudo-second order, and intraparticle diffusion equations to determine the rate controlling step. Results showed that the pseudo-second order adsorption mechanism is predominant, and the overall rate of the dye adsorption process is therefore controlled by an adsorption reaction. Adsorption isotherms were analyzed by utilizing the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models at 23, with data collected by using various initial dye concentrations with different chitin dosages. Our results show the highest correlation with the Langmuir model, consistent with the fact that chitin contains both a monolayer and homogeneous adsorption sites. Based on the D-R model, the adsorption of AY25 dye onto chitin is via chemisorption. Furthermore, we have concluded that the rate constants of both pseudo-second order adsorption and film diffusion are correlated to the initial dye concentrations and chitin dosages. In conclusion, chitin from waste crab legs is a very suitable adsorbent material that is capable of rapidly removing up to 95% of the initial concentration of AY25 dye at a pH of 2 and room temperature.

References

[1]  Dotto, G.L., Vieira, M.L.G., and Pinto, L.A.A. (2012) Kinetics and Mechanism of Tartrazine Adsorption onto Chitin and Chitosan. Industrial & Engineering Chemistry Research, 51, 6862-6868.
https://doi.org/10.1021/ie2030757
[2]  Thorat, P.R. and Shertate, S.R. (2013) Biotransformation of a Textile AZO Dye Acid Yellow 25 by Marinobacter Gudaonensis AY-13. Journal of Engineering, Computers, & Applied Sciences, 2, 11
[3]  Saibaba, N.K.V., King, P., Gopinadh, R. and Sreelakshmi, V. (2011) Response Surface Optimization of Dye Removal by Using Waste Prawn Shells. International Journal of Chemical Sciences and Applications, 2, 186-193.
[4]  Kumar, R. and Ahmad, R. (2011) Biosorption of Hazardous Crystal Violet Dye from Aqueous Solution onto Treated Ginger Waste (TGW). Desalination, 265, 112-118.
https://doi.org/10.1016/j.desal.2010.07.040
[5]  Blackburn, R.S. (2004) Natural Polysaccharides and Their Interactions with Dye Molecules: Applications in Effluent Treatment. Environmental Science & Technology, 38, 4905-4909.
https://doi.org/10.1021/es049972n
[6]  Thirumalisamy, S. and Subbian, M. (2010) Removal of Methylene Blue from Aqueous solution by Activated Carbon Prepared from the Peel of Cucumis Sativa Fruit by Adsorption. Biosource Technology, 5, 419-437.
[7]  Begum, H.A., Mondal, A.K. and Muslim, T. (2012) Adsorptive Removal of Reactive Black 5 from Aqueous Solution Using Chitin Prepared from Shrimp Shells. Bangladesh Pharmaceutical Journal, 15, 145-152.
https://doi.org/10.3329/bpj.v15i2.12580
[8]  DFO, S.C. (2018) U.S. National Marine Fisheries Service, Bank of Canada.
http://www.dfo-mpo.gc.ca/fm-gp/peches-fisheries/reports-rapports/sc-cn_e.pdf
[9]  Kasaai, M.R. (2009) Various Methods for Determination of the Degree of N-Acetylation of Chitin and Chitosan: A Review. Journal of Agricultural and Food Chemistry, 57, 1667-1676.
https://doi.org/10.1021/jf803001m
[10]  Sagheer, F.A.A., Al-Sughayer, M.A., Muslim, S. and Elsabee, M.Z. (2009) Extraction and Characterization of Chitin and Chitosan from Marine Sources in Arabian Gulf. Carbohydrate Polymers, 77, 410-419.
https://doi.org/10.1016/j.carbpol.2009.01.032
[11]  Stefancich, S., Delben, F. and Muzzarelli, R.A.A. (1994) Interaction of Soluble Chitosans with Dyes in Water. I. Optical Evidence. Carbohydrate Polymers, 24, 17-23.
https://doi.org/10.1016/0144-8617(94)90112-0
[12]  Iqbal, J., Wattoo, F.H., Wattoo, M.H.S., Malik, R., Tirmizi, S.A., Imran, M. and Ghangro, A.B. (2011) Adsorption of Acid Yellow Dye on Flakes of Chitosan Prepared from Fishery Wastes. Arabian Journal of Chemistry, 4, 389-395.
https://doi.org/10.1016/j.arabjc.2010.07.007
[13]  Saha, T.K., Bhoumik, N.C., Subarna, K.G., Ahmed, M.G., Hideki, I. and Yoshinobu, F. (2011) Adsorption Characteristics of Reactive Black 5 from Aqueous Solution onto Chitosan. CLEAN—Soil, Air, Water, 39, 984-993.
https://doi.org/10.1002/clen.201000315
[14]  Azizian, S. (2004) Kinetic Models of Sorption: A Theoretical Analysis. Journal of Colloid and Interface Science, 276, 47-52.
https://doi.org/10.1016/j.jcis.2004.03.048
[15]  Cheung, W.H., Szeto, Y.S. and McKay, G. (2007) Intraparticle Diffusion Processes during Acid Dye Adsorption onto Chitosan. Bioresource Technology, 98, 2897-2904.
https://doi.org/10.1016/j.biortech.2006.09.045
[16]  Gerente, C., Lee, V.K.C., Cloirec, P.L. and McKay, G. (2007) Application of Chitosan for the Removal of Metals from Wastewaters by Adsorption—Mechanisms and Models Review. Critical Reviews in Environmental Science and Technology, 37, 41-127.
https://doi.org/10.1080/10643380600729089
[17]  Mahmoodi, N.M., Hayati, B. and Arami, M. (2010) Textile Dye Removal from Single and Ternary Systems Using Date Stones: Kinetic, Isotherm, and Thermodynamic Studies. Journal of Chemical & Engineering Data, 55, 4638-4649.
https://doi.org/10.1021/je1002384
[18]  Ling, S.L.Y., Yee, C.Y. and Eng, H.S. (2011) Removal of a Cationic Dye Using Deacetylated Chitin (Chitosan). Journal of Applied Sciences, 11, 1445-1448.
https://doi.org/10.3923/jas.2011.1445.1448
[19]  Do, D.D. (1998) Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London.
[20]  Sari, A., Mendil, D., Tuzen, M. and Soylak, M. (2008) Biosorption of Cd(II) and Cr(III) from Aqueous Solution by Moss (Hylocomium splendens) Biomass: Equilibrium, Kinetic and Thermodynamic Studies. Chemical Engineering Journal, 144, 1-9.
https://doi.org/10.1016/j.cej.2007.12.020
[21]  Aharoni, C. and Ungarish, M. (1977) Kinetics of Activated Chemisorption. Part 2.-Theoretical Models. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 73, 456-464.
https://doi.org/10.1039/f19777300456
[22]  Dada, A.O., Olalekan, A.P., Olatunya, A.M. and Dada, O. (2012) Langmuir, Freundlich, Temkin and Dubinin-Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ onto Phosphoric Acid Modified Rice Husk. IOSR Journal of Applied Chemistry, 3, 38-45.
https://doi.org/10.9790/5736-0313845
[23]  Mc Kay, G., Blair, H.S. and Gardner, J. (1983) Rate Studies for the Adsorption of Dyestuffs onto Chitin. Journal of Colloid and Interface Science, 95, 108-119.
https://doi.org/10.1016/0021-9797(83)90078-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133