A field experiment was conducted in a newly reclaimed soil at El-Saff region, El-Giza Governorate, Egypt to study the effects of different rates of nitrogen (N: 62 to 248?kg?ha?1) with or without soil inoculation of sulfur- (S-) oxidizing bacteria (SoxB) and combined inoculation of SoxB and N-fixing bacteria (NFxB) on yield, quality and nutritional status of onion (Allium cepa L., “Giza 20”). Elemental S at 620?kg?ha?1 was applied to all treatments. Application of N at 62, 124, and 248?kg?ha?1 rates increased onion yield, plant height, and N uptake by 28 to 76%, 32 to 53%, and 61 to 145%, as compared to those of the plants that received no N. Inoculation of SoxB at various N rates increased onion yields by 47 to 69% and N uptake by 76 to 93%, as compared to those of the plants which received the respective rates of N but no SoxB inoculation. Inoculation with SoxB and NFxB increased onion yield by 221%, plant height by 62%, and N uptake by 629%, as compared to those of the plants grown without inoculation and no N applied. 1. Introduction Recommendation of optimal nitrogen (N) fertilization strategy and improvement of N management efficiency heavily rely on precise evaluation of N status in plant-soil system. For most annual crops, N is generally applied as a base dressing before planting. Prolonged lag time between N application to the soil and its maximum crop uptake, following seedling emergence and rapid growth, may result in N leaching below the rootzone, hence not available for plant uptake. To maximize the benefits of N nutrition and to ensure adequate N availability throughout the growing season, additional N application later during the growing season may be required. Therefore, it is important to follow an optimized N fertilizer application as per recommended or accepted procedures for high yields and quality of onion production [1]. Sulfur (S) is needed by plants and microorganisms, and its speciation in soil is dependent on the chemical state of the soil, including (1) redox potential, that is, tendency of the soil solution to either gain or lose electrons and thereby suggests the aerobic or anaerobic status of the soil and (2) soil acidity [2]. Plant availability of S in a given soil is dependent on the S speciation in soils, influenced by pedogenetic processes and physicochemical factors, that is, water logging. The oxidation of S to in soil is a biological process and is carried out by several kinds of microorganisms, that is, Thiobacillus thiooxidans, T. ferrooxidans, T. thioparus, T. denitrificans, and T. novellus. The rate at which this
References
[1]
L. Songzhong, H. He, G. Feng, and Q. Chen, “Effect of nitrogen and sulfur interaction on growth and pungency of different pseudostem types of Chinese spring onion (Allium fistulosum L.),” Scientia Horticulturae, vol. 121, no. 1, pp. 12–18, 2009.
[2]
R. W. Howarth, J. W. B. Stewart, and M. V. Ivanov, “Sulphur cycling on the continents,” in Scientific Committee on Problems of the Environment, vol. 48, p. 350, John Wiley & Sons, New York, NY, USA, 1992.
[3]
A. Abd-Elfattah, M. S. M. Saber, and M. H. Hilal, “The use of Thiobacillus in regulating the metabolism in clay loam soil supplemented with elemental sulphur,” Egyptian Journal of Soil Science, vol. 31, pp. 333–341, 1991.
[4]
S. Haneklaus, E. Bloem, and E. Schnug, “The global sulphur cycle and its link to plant environment,” in Sulphur in Plants, pp. 1–28, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003.
[5]
H. W. Scherer, “Sulphur in crop production-invited paper,” European Journal of Agronomy, vol. 14, no. 2, pp. 81–111, 2001.
[6]
M. A. Kertesz and P. Mirleau, “The role of soil microbes in plant sulphur nutrition,” Journal of Experimental Botany, vol. 55, no. 404, pp. 1939–1945, 2004.
[7]
F. J. Zhao, M. J. Hawkesford, and S. P. McGrath, “Sulphur assimilation and effects on yield and quality of wheat,” Journal of Cereal Science, vol. 30, no. 1, pp. 1–17, 1999.
[8]
M. Wainright, “Sulphur oxidation in soilsAdvanced Agronomy,” Advanced Agronomy, vol. 37, pp. 350–392, 1984.
[9]
I. Suzuki, “Oxidation of inorganic sulfur compounds: Chemical and enzymatic reactions,” Canadian Journal of Microbiology, vol. 45, no. 2, pp. 97–105, 1999.
[10]
K. Hitsuda, M. Yamada, and D. Klepker, “Sulfur requirement of eight crops at early stages of growth,” Agronomy Journal, vol. 97, no. 1, pp. 155–159, 2005.
[11]
A. L. Page, R. H. Miller, and D. R. Keeney, Methods of Soil Analysis. Part2. Chemical and Micro- Biological Properties, American Society for Agronomy, Madison, Wis, USA, 2nd edition, 1982.
[12]
FAO, Guidelines to Soil Description, FAO Publishing, 1970.
[13]
A. M. Nemat and K. M. A. Khalil, “Biofertilization of squash plants grown in sulphur rectified sandy soil with Streptomyces venezuelae mutant and/or Thiobacillus thiooxidans,” Bulletin of the National Research Center, vol. 28, pp. 658–694, 2003.
[14]
R. L. Starkey, “Cultivation of organisms concerned in the oxidation of thiosulfate,” Journal of Bacteriology, vol. 28, pp. 365–386, 1934.
[15]
Y. P. Kalra and D. G. Maynard, Methods Manual for Forest Soil, Forestry Canada Northern Forestry Centre, 1995.
[16]
G. W. Snedecor and W. G. Cochran, Statistical Methods, Iowa State University, Ames, Iowa, USA, 7th edition, 1982.
[17]
K. K. Kapoor and M. M. Mishra, “Microbial transformation of sulphur and plant nutrition,” in Soil Microorganisms and Crop Growth, pp. 1–30, 1989.
[18]
J. A. Lucas García, A. Probanza, B. Ramos, J. Barriuso, and F. J. Gutierrez Ma?ero, “Effects of inoculation with plant growth promoting rhizobacteria (PGPRs) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv. Osumi,” Plant and Soil, vol. 267, no. 1-2, pp. 145–153, 2005.
[19]
R. Anandham, R. Sridar, P. Nalayini, S. Poonguzhali, M. Madhaiyan, and S. Tongmin, “Potential for plant growth promotion in groundnut (Arachis hypogaea L.) cv. ALR-2 by co-inoculation of sulfur-oxidizing bacteria and Rhizobium,” Microbiological Research, vol. 162, no. 2, pp. 139–153, 2007.
[20]
N. P. Stamford, A. J. N. Silva, A. D. S. Freitas, and A. J. Filho, “Effect of sulphur inoculated with Thiobacillus on soil salinity and growth of tropical tree legumes,” Bioresource Technology, vol. 81, no. 1, pp. 53–59, 2002.
[21]
T. W. Coolong and W. M. Randle, “Sulfur and nitrogen availability interact to affect the flavor biosynthetic pathway in onion,” Journal of the American Society for Horticultural Science, vol. 128, no. 5, pp. 776–783, 2003.
[22]
L. H. Jiang, Z. H. Liu, Q. Chen, H. T. Lin, and W. J. Zhang, “Study on the effect of nitrogen on green Chinese onion yield and N supplying target value,” Plant Nutrition and Fertilizer Science, vol. 13, pp. 890–896, 2007.
[23]
D. M. Sullivan, B. D. Brown, C. C. Shock, et al., “Nutrient management for onion in the pacific northwest. A pacific northwest extension publication, Oregon State University, Washington State University, and University of Idaho,” PNW 546, 2001.
[24]
R. Sutaliya, A. K. Gupta, and R. N. Singh, “Yield attributes of barley as influenced by phosphorus, sulphur and their correlation and regression with yield,” Crop Research, vol. 25, pp. 585–586, 2003.
[25]
M. EL-Desuki, A. R. Mahmoud, and M. M. Hafiz, “Response of onion plants to minerals and bio-fertilizers application,” Research Journal of Agriculture and Biological Sciences, vol. 2, pp. 292–298, 2006.
[26]
M. Smatanová, R. Richter, and J. Hlu?ek, “Spinach and pepper response to nitrogen and sulphur fertilization,” Plant, Soil and Environment, vol. 50, no. 7, pp. 303–308, 2004.
[27]
M. R. Banerjee and L. Yesmin, “Sulfur oxidizing rhizobacteria: an innovative environment friendly soil biotechnological tool for better canola production,” Proceedings of the Agro-Environment, vol. October, pp. 1–7, 2002.
[28]
J. M. Whipps, “Microbial interactions and biocontrol in the rhizosphere,” Journal of Experimental Botany, vol. 52, pp. 487–511, 2001.
[29]
L. Yesmin and M. R. Banerjee, “Bacterial viability and biological seed treatment of canola,” Proceedings of Soils & Crops, pp. 314–319, 2001.
[30]
Y. Okon and C. A. Labandera-Gonzalez, “Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation,” Soil Biology and Biochemistry, vol. 26, no. 12, pp. 1591–1601, 1994.
[31]
Y. Bashan, M. E. Puente, M. N. Rodriguez-Mendoza et al., “Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types,” Applied and Environmental Microbiology, vol. 61, no. 5, pp. 1938–1945, 1995.
[32]
H. Levanony, Y. Bashan, and Z. E. Kahana, “Enzyme-linked immunosorbent assay for specific identification and enumeration of Azospirillum brasilense Cd. in cereal roots,” Applied and Environmental Microbiology, vol. 53, pp. 358–364, 1987.
[33]
W. Zimmer and H. Bothe, “The phytohormonal interactions between Azospirillum and wheat,” Plant and Soil, vol. 110, no. 2, pp. 239–247, 1988.
[34]
A. Gamliel and J. Katan, “Chemotaxis of fluoresent Pseudomonas towards seed exudates and germinating seeds in solarized soil,” Ecology and Epidemiology, vol. 82, pp. 328–332, 1992.
[35]
R. Arteca, Plant Growth Substances, Chapman and Hall, New York, NY, USA, 1996.
[36]
B. Amstron, A. Gustafsson, and B. Gerharsson, “Characteristics of a plant deleterious rhizosphere pseudomonad and its inhibitory metabolite (s),” Journal of Applied Bacteriology, vol. 74, pp. 20–28, 1993.
[37]
A. F. Rizk, “Productivity of onion plant (Allium cepa L.) as affected by method of planting and NPK application,” Egyptian Journal of Horticulture, vol. 24, pp. 219–238, 1997.