全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Rhythmic and Spоradic Changes in the Rate of Beta Decays: Possible Reasons

DOI: 10.4236/jmp.2018.98101, PP. 1617-1632

Keywords: Beta Radioactivity, Nuclear Decay Rate, Solar Neutrinos, Relic Neutrinos, Variations of Radioactivity, Rhythmic Oscillations

Full-Text   Cite this paper   Add to My Lib

Abstract:

In a number of experiments, when detecting particles emitted in beta decays, periodic oscillations of count rate with an amplitude up to tenths of a percent and short bursts vastly exceeding the usual count rate are found. At the same time, several experiments did not detect any differences from the “normal” course of beta decays greater than 0.01%. The article shows that the inconsistency of the experimental results is due to different measurement technique. The assumption is made of the possible participation in the beta decay processes of cosmic slow neutrinos, which makes it possible to explain in a comprehensive manner not only periodic and sporadic changes in the beta decay rate, but also a number of other incomprehensible phenomena associated with beta radioactivity. On the basis of the experiments carried out, an estimate is made of the flux density of slow cosmic neutrinos.

References

[1]  Siegert, Н., Shrader, H. and Schotzis, U. (1998) Applied Radiation and Isotopes, 49, 1397-1401.
[2]  Ellis, K.J. (1990) Physics in Medicine and Biology, 35, 1079-1088.
https://doi.org/10.1088/0031-9155/35/8/004
[3]  Alburder, D.E., Harbottle, G. and Norton, E.F. (1986) Earth and Planetary Science Letters, 78, 169.
[4]  Parkhomov, A.G. (2010) Researches of Alpha and Beta Radioactivity at Long-Term Observations. arXiv:1004.1761v1 [physics.gen-ph]
[5]  Sturrock, P.A., Parkhomov, A.G., Fischbach, E. and Jenkins, J.H. (2012) Astroparticle Physics, 35, 755-758.
[6]  Jenkins, J.H., et al. (2009) Astroparticle Physics, 3, 42-46.
[7]  Sturrock, P.A., Buncher, J.B., Fischbach, E., et al. (2010) Power Spectrum Analysis of Physikalisch-Technische Bundesanstalt Decay-Rate Data: Evidence for Solar Rotational Modulation. arXiv:1010.2225v1 [astro-ph.SR]
[8]  Jenkins, J.H., et al. (2008) Evidence for Correlations between Nuclear Decay Rates and Earth-Sun Distance. arXiv:0808.3283v1 [astro-ph]
[9]  Jenkins, J.H., et al. (2012) Additional Experimental Evidence for a Solar Influence on Nuclear Decay Rates. arXiv:1207.5783v1 [nucl-ex]
[10]  Schrader, H. (2016) Applied Radiation and Isotopes, 114, 202-213.
[11]  Sturrock, P.A., et al. (2014) Astroparticle Physics, 59, 47-58.
[12]  Falkenberg, E.D. (2001) Apeiron, 8, 32-45.
[13]  Parkhomov, A.G. (2010) Periods Detected during Analysis of Radioactivity Measurements Data. arxiv:1012.4174v1 [physics.gen-ph]
[14]  Parkhomov, A.G. (2011) Journal of Modern Physics, 2, 1310-1317.
[15]  Parkhomov, A.G. (2009) Cosmos. Earth. New Sides of Science. Science, Мoscow. (In Russian).
[16]  Parkhomov, A.G. (2013) Study of Alpha and Beta Radioactivity in Long-Term Measurements. Presentation of the Report at the INR RAS Seminar. (In Russian)
http://www.inr.ru/rus/kud-sem/parkhomov-18-02-13.pdf
[17]  Parkhomov, A.G. (2010) Influence of Relic Neutrinos on Beta Radioactivity. arXiv:1010.1591v1 [physics.gen-ph]
[18]  Jenkins, J.H. and Fischbach, E. (2009) Astroparticle Physics, 31, 407-411.
https://doi.org/10.1016/j.astropartphys.2009.04.005
[19]  Parkhomov, A.G. (2010) Effect of Radioactivity Decrease. Is There a Link with Solar Flares? arXiv: 1006.2295v1 [physics.gen-ph]
[20]  Parkhomov, A.G. (2005) International Journal of Pure and Applied Physics, 1, 119-128.
[21]  Norman, E.B., Browne, E., Shugart, H.A., Joshi, T.H. and Firestone, R.B. (2009) Astroparticle Physics, 31, 135-137.
https://doi.org/10.1016/j.astropartphys.2008.12.004
[22]  Cooper, P.S. (2008) Astroparticle Physics, 31, 267-269. arXiv:0809.4248v1 [astro-ph]
[23]  Bellotti, E., Broggini, C., Di Carlo, G., et al. (2013) Physics Letters B, 720, 116-119.
https://doi.org/10.1016/j.physletb.2013.02.002
[24]  Semkow, T.M., et al. (2009) Physics Letters B, 675, 415-419.
https://doi.org/10.1016/j.physletb.2009.04.051
[25]  Pommé, S., Stroh, H., Paepen, J., et al. (2016) Physics Letters B, 761, 281-286.
https://doi.org/10.1016/j.physletb.2016.08.038
[26]  Bergeson, S.D., Peatross, J. and Ware, M.J. (2017) Physics Letters B, 767, 171-176.
https://doi.org/10.1016/j.physletb.2017.01.030
[27]  Bellotti, E., et al. (2015) Physics Letters B, 743, 526-530.
https://doi.org/10.1016/j.physletb.2015.03.021
[28]  Bellotti, E., Broggini, C., Di Carlo, G., Laubenstein, M. and Menegazzo, R. (2018) Search for Time Modulations in the Decay Constant of 40K and 226Ra at the Underground Gran Sasso Laboratory. arXiv:1802.09373v1 [nucl-ex]
[29]  Bethe, H. and Peierls, R. (1934) Nature, 133, 689-690.
https://doi.org/10.1038/133689b0
[30]  Giunti, C. and Kim, C.W. (2007) Fundamentals of Neutrino Physics and Astrophysics. Oxford University Press, Oxford.
https://doi.org/10.1093/acprof:oso/9780198508717.001.0001
[31]  Lobashev, V.M., Aseev, V.N. and Belesev, A.I. (1999) Physics Letters B, 460, 227-232.
https://doi.org/10.1016/S0370-2693(99)00781-9
[32]  Parkhomov, A.G. (2004) Distribution and Motion of Dark Matter, MNTTs VENT, Moscow. (In Russian)
http://www.chronos.msu.ru/old/RREPORTS/parkhomov_raspredelenie.pdf

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133