全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Special Relativity with a Preferred Frame and the Relativity Principle

DOI: 10.4236/jmp.2018.98100, PP. 1591-1616

Keywords: Principle of Relativity, Anisotropy of the One-Way Speed of Light, Lie Groups of Transformations, CMB

Full-Text   Cite this paper   Add to My Lib

Abstract:

The purpose of the present study is to develop a counterpart of the special relativity theory that is consistent with the existence of a preferred frame but, like the standard relativity theory, is based on the relativity principle and the universality of the (two-way) speed of light. The synthesis of such seemingly incompatible concepts as the existence of preferred frame and the relativity principle is possible at the expense of the freedom in assigning the one-way speeds of light that exists in special relativity. In the framework developed, a degree of anisotropy of the one-way speed acquires meaning of a characteristic of the really existing anisotropy caused by motion of an inertial frame relative to the preferred frame. The anisotropic special relativity kinematics is developed based on the symmetry principles: 1) Space-time transformations between inertial frames leave the equation of anisotropic light propagation invariant and 2) a set of the transformations possesses a group structure. The Lie group theory apparatus is applied to define groups of transformations between inertial frames. Applying the transformations to the problem of calculating the CMB temperature distribution yields a relation in which the angular dependence coincides with that obtained on the basis of the standard relativity theory but the mean temperature is corrected by the terms second order in the observer velocity.

References

[1]  Robertson, H.P. (1949) Reviews of Modern Physics, 21, 378-382.
https://doi.org/10.1103/RevModPhys.21.378
[2]  Mansouri, R. and Sexl, S.U. (1977) General Relativity and Gravitation, 8, 497-513, 515-524, 809-814.
https://doi.org/10.1007/BF00762634
[3]  Ungar, A.A. (1991) Foundations of Physics, 21, 691-726.
https://doi.org/10.1007/BF00733277
[4]  Anderson, R., Vetharaniam, I. and Stedman, G.E. (1998) Physics Reports, 295, 93-180.
https://doi.org/10.1016/S0370-1573(97)00051-3
[5]  Minguzzi, E. (2002) Foundations of Physics Letters, 15, 153-169.
https://doi.org/10.1023/A:1020900108093
[6]  Rizzi, G., Ruggiero, M.L. and Serafini, A. (2004) Foundations of Physics, 34, 1835-1887.
https://doi.org/10.1007/s10701-004-1624-3
[7]  Edwards, W.F. (1963) American Journal of Physics, 31, 482-489.
https://doi.org/10.1119/1.1969607
[8]  Winnie, J.A. (1970) Philosophy of Science, 37, 223-238.
https://doi.org/10.1086/288296
[9]  Ungar, A.A. (1986) Philosophy of Science, 53, 395-402.
https://doi.org/10.1086/289324
[10]  Pauli, W. (1958) Theory of Relativity. Pergamon Press, London.
[11]  Landau, L.D. and Lifshitz, E.M. (1971) The Classical Theory of Fields. Pergamon Press, Oxford.
[12]  Burde, G.I. (2016) Foundations of Physics, 46, 1573-1597.
https://doi.org/10.1007/s10701-016-0029-4
[13]  Ohanian, H. (2004) American Journal of Physics, 72, 141-148.
https://doi.org/10.1119/1.1596191
[14]  Macdonald, A. (2005) American Journal of Physics, 73, 454-455.
https://doi.org/10.1119/1.1858448
[15]  Martinez, A. (2005) American Journal of Physics, 73, 452-454.
https://doi.org/10.1119/1.1858446
[16]  Ohanian, H. (2005) American Journal of Physics, 73, 456-457.
https://doi.org/10.1119/1.1858449
[17]  Bateman, H. (1910) Proceedings of the London Mathematical Society, 8, 223-264.
https://doi.org/10.1112/plms/s2-8.1.223
[18]  Cunningham, E. (1910) Proceedings of the London Mathematical Society, 8, 77-98.
https://doi.org/10.1112/plms/s2-8.1.77
[19]  Fulton, T., Rohrlich, F. and Witten, L. (1962) Reviews of Modern Physics, 34, 442-457.
https://doi.org/10.1103/RevModPhys.34.442
[20]  Kastrup, H.A. (2008) Annals of Physics (Berlin), 17, 631-690.
https://doi.org/10.1002/andp.200810324
[21]  Bogoslovsky, G.Yu. (2006) Physics Letters A, 350, 5-10.
https://doi.org/10.1016/j.physleta.2005.11.007
[22]  Sonego, S. and Pin, M. (2009) Journal of Mathematical Physics, 50, Article ID: 042902.
https://doi.org/10.1063/1.3104065
[23]  Lalan, V. (1937) Bulletin de la Société Mathématique de France, 65, 83-99.
https://doi.org/10.24033/bsmf.1266
[24]  von Ignatowski, W.A. (1910) Physikalische Zeitschrift, 11, 972-976.
[25]  Frank, Ph. and Rothe, H. (1911) Annals of Physics, 34, 825-853.
https://doi.org/10.1002/andp.19113390502
[26]  Bluman, G.W. and Kumei, S. (1989) Symmetries and Differential Equations. Applied Mathematical Sciences, Vol. 81, Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4757-4307-4
[27]  Olver, P.J. (1993) Applications of Lie Groups to Differential Equations (Graduate Texts in Mathematics: Vol. 107). Springer, New York.
[28]  Winnie, J.A. (1970) Philosophy of Science, 37, 81-99.
https://doi.org/10.1086/288281
[29]  Peebles, P.J.E. and Wilkinson, D.T. (1968) Physical Review, 174, 2168.
https://doi.org/10.1103/PhysRev.174.2168
[30]  Tangherlini, F.R. (1958) The Abraham Zelmanov Journal, 2, 44-110.
[31]  Guerra, V. and de Abreu, R. (2006) Foundations of Physics, 36, 1826-1845.
https://doi.org/10.1007/s10701-006-9085-5
[32]  de Abreu, R. and Guerra, V. (2008) European Journal of Physics, 29, 33-52.
https://doi.org/10.1088/0143-0807/29/1/004

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133