全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Neural Excitability Based Coding Strategy for Cochlear Implants

DOI: 10.4236/jbise.2018.117014, PP. 159-181

Keywords: Cochlear Implants, Speech Coding, Auditory, Neural Excitability, Channel Interaction

Full-Text   Cite this paper   Add to My Lib

Abstract:

A novel cochlear implant coding strategy based on the neural excitability has been developed and implemented using Matlab/Simulink. Unlike present day coding strategies, the Excitability Controlled Coding (ECC) strategy uses a model of the excitability state of the target neural population to determine its stimulus selection, with the aim of more efficient stimulation as well as reduced channel interaction. Central to the ECC algorithm is an excitability state model, which takes into account the supposed refractory behaviour of the stimulated neural populations. The excitability state, used to weight the input signal for selecting the stimuli, is estimated and updated after the presentation of each stimulus, and used iteratively in selecting the next stimulus. Additionally, ECC regulates the frequency of stimulation on a given channel as a function of the corresponding input stimulus intensity. Details of the model, implementation and results of benchtop plus subjective tests are presented and discussed. Compared to the Advanced Combination Encoder (ACE) strategy, ECC produces a better spectral representation of an input signal, and can potentially reduce channel interactions. Pilot test results from 4 CI recipients suggest that ECC may have some advantage over ACE for complex situations such as speech in noise, possibly due to ECC’s ability to present more of the input spectral contents compared to ACE, which is restricted to a fixed number of maxima. The ECC strategy represents a neuro-physiological approach that could potentially improve the perception of more complex sound patterns with cochlear implants.

References

[1]  Tong, Y.C., Black, R.C., Clark, G.M., Forster, I.C., Millar, J.B., O’Loughlin, B.J. and Patrick, J.F. (1979) A Preliminary Report on a Multiple-Channel Cochlear Implant Operation. The Journal of Laryngology & Otology, 93, 679-695.
https://doi.org/10.1017/S0022215100087545
[2]  Spillmann, T., Dillier, N. and Guntensperger, J. (1982) Electrical Stimulation of Hearing by Implanted Cochlear Electrodes in Humans. Applied Neurophysiology, 45, 32-37.
https://doi.org/10.1159/000101574
[3]  Shannon, R.V. (1983) Multichannel Electrical Stimulation of the Auditory Nerve in Man. II. Channel Interaction. Hearing Research, 12, 1-16.
https://doi.org/10.1016/0378-5955(83)90115-6
[4]  Cohen, L.T., Saunders, E. and Richardson, L.M. (2004) Spatial Spread of Neural Excitation: Comparison of Compound Action Potential and Forward-Masking Data in Cochlear Implant Recipients. International Journal of Audiology, 43, 346-355.
https://doi.org/10.1080/14992020400050044
[5]  Wilson, B.S., Finley, C.C., Farmer, J.C., Lawson, D.T., Weber, B.A., Wolford, R.D., Kenan, P.D., White, M.W., Merzenich, M.M. and Schindler, R.A. (1988) Comparative Studies of Speech Processing Strategies for Cochlear Implants. Laryngoscope, 98, 1069-1077.
[6]  von Wallenberg, E.L., Hochmair, E.S. and Hochmairdesoyer, I.J. (1990) Initial Results with Simultaneous Analog and Pulsatile Stimulation of the Cochlea. Acta Oto-Laryngologica, 469, 140-149.
[7]  Wilson, B.S., Finley, C.C., Lawson, D.T., Wolford, R.D., Eddington, D.K. and Rabinowitz, W.M. (1991) Better Speech Recognition with Cochlear Implants. Nature, 352, 236-238.
https://doi.org/10.1038/352236a0
[8]  Wilson, B.S., Finley, C.C., Lawson, D.T., Wolford, R.D. and Zerbi, M. (1993) Design and Evaluation of a Continuous Interleaved Sampling (Cis) Processing Strategy for Multi-channel Cochlear Implants. Journal of Rehabilitation Research and Development, 30, 110-116.
[9]  Skinner, M.W., Holden, L.K., Whitford, L.A., Plant, K.L., Psarros, C. and Holden, T.A. (2002) Speech Recognition with the Nucleus 24 SPEAK, ACE, and CIS Speech Coding Strategies in Newly Implanted Adults. Ear and Hearing, 23, 207-223.
https://doi.org/10.1097/00003446-200206000-00005
[10]  Vandali, A.E., Sucher, C., Tsang, D.J., McKay, C.M., Chew, J.W.D. and McDermott, H.J. (2005) Pitch Ranking Ability of Cochlear Implant Recipients: A Comparison of Sound-Processing Strategies. Journal of the Acoustical Society of America, 117, 3126-3138.
https://doi.org/10.1121/1.1874632
[11]  Laneau, J., Wouters, J. and Moonen, M. (2006) Improved Music Perception with Explicit Pitch Coding in Cochlear Implants. Audiology and Neuro-Otology, 11, 38-52.
https://doi.org/10.1159/000088853
[12]  Drennan, W.R. and Rubinstein, J.T. (2008) Music Perception in Cochlear Implant Users and Its Relationship with Psychophysical Capabilities. Journal of Rehabilitation Research and Development, 45, 779-789.
https://doi.org/10.1682/JRRD.2007.08.0118
[13]  Morton, K.D., Torrione, P.A., Throckmorton, C.S. and Collins, L.M. (2008) Mandarin Chinese Tone Identification in Cochlear Implants: Predictions from Acoustic Models. Hearing Research, 244, 66-76.
https://doi.org/10.1016/j.heares.2008.07.008
[14]  Vandali, A.E. and van Hoesel, R.J.M. (2011) Development of a Temporal Fundamental Frequency Coding Strategy for Cochlear Implants. Journal of the Acoustical Society of America, 129, 4023-4036.
https://doi.org/10.1121/1.3573988
[15]  Blamey, P.J., Dowell, R.C., Brown, A.M., Clark, G.M. and Seligman, P.M. (1987) Vowel and Consonant Recognition of Cochlear Implant Patients Using Formant-Estimating Speech Processors. Journal of the Acoustical Society of America, 82, 48-57.
https://doi.org/10.1121/1.395436
[16]  Patrick, J.F. and Clark, G.M. (1991) The Nucleus 22-Channel Cochlear Implant System. Ear and Hearing, 12, S3-S9.
https://doi.org/10.1097/00003446-199108001-00002
[17]  Riss, D., Arnoldner, C., Baumgartner, W.D., Kaider, A. and Hamzavi, J.S. (2008) A New Fine Structure Speech Coding Strategy: Speech Perception at a Reduced Number of Channels. Otology & Neurotology, 29, 784-788.
https://doi.org/10.1097/MAO.0b013e31817fe00f
[18]  Hu, H., Krasoulis, A., Lutman, M. and Bleeck, S. (2013) Development of a Real Time Sparse Non-Negative Matrix Factorization Module for Cochlear Implants by Using xPC Target. Sensors (Basel), 13, 13861-13878.
https://doi.org/10.3390/s131013861
[19]  Zeng, F.G. and Shannon, R.V. (1995) Loudness of Simple and Complex Stimuli in Electric Hearing. The Annals of Otology, Rhinology & Laryngology, 166, 235-238.
[20]  Theelenvan den Hoek, F.L., Boymans, M., van Dijk, B. and Dreschler, W.A. (2016) Adjustments of the Amplitude Mapping Function: Sensitivity of Cochlear Implant Users and Effects on Subjective Preference and Speech Recognition. International Journal of Audiology, 55, 674-687.
https://doi.org/10.1080/14992027.2016.1202454
[21]  Noguiera, W., Büchner, A., Lenarz, T. and Edler, B. (2005) A Psychoacoustic NofM-Type Speech Coding Strategy for Cochlear Implants. EURASIP Journal on Advances in Signal Processing, 18, 3044-3059.
https://doi.org/10.1155/ASP.2005.3044
[22]  Buechner, A., Beynon, A., Szyfter, W., Niemczyk, K., Hoppe, U., Hey, M., Brokx, J., Eyles, J., Van de Heyning, P., Paludetti, G., Zarowski, A., Quaranta, N., Wesarg, T., Festen, J., Olze, H., Dhooge, I., Muller-Deile, J., Ramos, A., Roman, S., Piron, J.P., Cuda, D., Burdo, S., Grolman, W., Vaillard, S.R., Huarte, A., Frachet, B., Morera, C., Garcia-Ibanez, L., Abels, D., Walger, M., Muller-Mazotta, J., Leone, C.A., Meyer, B., Dillier, N., Steffens, T., Gentine, A., Mazzoli, M., Rypkema, G., Killian, M. and Smoorenburg, G. (2011) Clinical Evaluation of Cochlear Implant Sound Coding Taking into Account Conjectural Masking Functions, MP3000. Cochlear Implants International, 12, 194-204.
https://doi.org/10.1179/1754762811Y0000000009
[23]  Laneau, J., Wouters, J. and Moonen, M. (2004) Relative Contributions of Temporal and Place Pitch Cues to Fundamental Frequency Discrimination in Cochlear Implantees. The Journal of the Acoustical Society of America, 116, 3606-3619.
https://doi.org/10.1121/1.1823311
[24]  Morsnowski, A., Charasse, B., Collet, L., Killian, M. and Muller-Deile, J. (2006) Measuring the Refractoriness of the Electrically Stimulated Auditory Nerve. Audiology and Neuro-Otology, 11, 389-402.
https://doi.org/10.1159/000095966
[25]  Killian, M.J.P. (2009) Sound Processing Method and System. WIPO.
[26]  Irwin, C. (2006) NIC v2 Software Interface Specification E11318RD (Technical Report). Cochlear Ltd., Lane Cove.
[27]  Swanson, B.A. and Mauch, H. (2006) Nucleus Matlab Toolbox 4.20 Software User Manual. Cochlear Ltd., Lane Cove.
[28]  Greenwood, D.D. (1990) A Cochlear Frequency-Position Function for Several Species—29 Years Later. The Journal of the Acoustical Society of America, 87, 2592-605.
https://doi.org/10.1121/1.399052
[29]  Dillier, N., Bogli, H. and Lai, W.K. (1995) Electrodographic Analysis and Field Evaluation of the Speak Coding Strategy. The Annals of Otology, Rhinology & Laryngology, 166, 354-356.
[30]  Grasmeder, M.L. and Lutman, M.E. (2006) The Identification of Musical Instruments through Nucleus Cochlear Implants. Cochlear Implants International, 7, 148-158.
https://doi.org/10.1179/cim.2006.7.3.148
[31]  Fu, Q.J. and Shannon, R.V. (2002) Frequency Mapping in Cochlear Implants. Ear and Hearing, 23, 339-348.
https://doi.org/10.1097/00003446-200208000-00009
[32]  Henry, B.A. and Turner, C.W. (2003) The Resolution of Complex Spectral Patterns by Cochlear Implant and Normal-Hearing Listeners. The Journal of the Acoustical Society of America, 113, 2861-2873.
https://doi.org/10.1121/1.1561900
[33]  Won, J.H., Drennan, W.R. and Rubinstein, J.T. (2007) Spectral-Ripple Resolution Correlates with Speech Reception in Noise in Cochlear Implant Users. Journal of the Association for Research in Otolaryngology, 8, 384-392.
https://doi.org/10.1007/s10162-007-0085-8
[34]  Wagener, K.C., Brand, T. and Kollmeier, B. (1999) Entwicklung und Evaluation eines Satztests für die deutsche Sprache Teil III: Evaluation des Oldenburger Satztests. Zeitschrift für Audiologie, 38, 86-95.
[35]  Fredelake, S. and Hohmann, V. (2012) Factors Affecting Predicted Speech Intelligibility with Cochlear Implants in an Auditory Model for Electrical Stimulation. Hearing Research, 287, 76-90.
https://doi.org/10.1016/j.heares.2012.03.005
[36]  Zhu, Z., Tang, Q., Zeng, F.G., Guan, T. and Ye, D. (2012) Cochlear-Implant Spatial Selectivity with Monopolar, Bipolar and Tripolar Stimulation. Hearing Research, 283, 45-58.
https://doi.org/10.1016/j.heares.2011.11.005
[37]  Fielden, C.A., Kluk, K., Boyle, P.J. and McKay, C.M. (2015) The Perception of Complex Pitch in Cochlear Implants: A Comparison of Monopolar and Tripolar Stimulation. The Journal of the Acoustical Society of America, 138, 2524-2536.
https://doi.org/10.1121/1.4931910
[38]  Jeon, E.K., Turner, C.W., Karsten, S.A., Henry, B.A. and Gantz, B.J. (2015) Cochlear Implant Users’ Spectral Ripple Resolution. The Journal of the Acoustical Society of America, 138, 2350-2358.
https://doi.org/10.1121/1.4932020
[39]  Horn, D.L., Won, J.H., Rubinstein, J.T. and Werner, L.A. (2017) Spectral Ripple Discrimination in Normal-Hearing Infants. Ear and Hearing, 38, 212-222.
https://doi.org/10.1097/AUD.0000000000000373
[40]  Aronoff, J.M. and Landsberger, D.M. (2013) The Development of a Modified Spectral Ripple Test. The Journal of the Acoustical Society of America, 134, EL217-EL222.
https://doi.org/10.1121/1.4813802

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133