全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Equivalence between a Gravity Field and an Unruh Acceleration Temperature Field as a Possible Clue to “Dark Matter”

DOI: 10.4236/jmp.2018.98098, PP. 1568-1572

Keywords: Dark Matter, Unruh Effect, Unruh Temperature, Supermassive Black Holes, Galactic Rotation Curves, Equivalence Principle, Hawking Radiation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Einstein’s equivalence principle allows one to compare the magnitudes of a gravitational acceleration field with the magnitudes of a field of Unruh acceleration temperatures. The validity of such a comparison is demonstrated by using it to derive the effective Hawking black body radiation at a Schwarzschild black hole horizon. One can then extend the black hole thought experiment to a Hawking-Unruh temperature equation expressed in terms of the Schwarzschild radius. This follows an inverse radius law rather than an inverse radius-squared law. Following a brief discussion of current theoretical failures to explain galactic rotation curves, the Unruh acceleration temperature equations are brought together to show how a rotating supermassive black hole galactic system should follow an inverse radius rule of centripetal gravitational force and centripetal acceleration. This result appears to indicate that galactic observations currently attributed to dark matter may in part be attributed to classical Newtonian dynamics superimposed on a relativistic rotating system powered by a supermassive black hole.

References

[1]  Unruh, W.G. (2001) Black Holes, Dumb Holes, and Entropy. In: Callender, C., Ed., Physics Meets Philosophy at the Planck Scale, Cambridge University Press, 152-173, Eq. 7.6.
https://doi.org/10.1017/CBO9780511612909.008
[2]  Hawking, S. (1976) Physical Review D, 13, 191-197.
https://doi.org/10.1103/PhysRevD.13.191
[3]  Alsing, P.M. and Milonni, P.W. (2004) American Journal of Physics, 72, 1524. arXiv:quant-ph/0401170.
[4]  Rubin, V.C., Thonnard, N. and Ford, W.K. (1978) The Astrophysical Journal Letters, 225, L107-L111.
[5]  Salucci, P. and De Laurentis, M. (2012) Proceedings of Science (DSU 2012). arXiv:1302.2268.
[6]  Salucci, P., et al. (2007) Monthly Notices of the Royal Astronomical Society, 378, 41-47. arXiv:astro-ph/0703115.
https://doi.org/10.1111/j.1365-2966.2007.11696.x
[7]  McGaugh, S. (2014) Canadian Journal of Physics, 93, 250-259. arXiv:1404.7525
[8]  Milgrom, M. (1983) Astrophysical Journal, 270, 365-370.
[9]  Kroupa, P., Pawlowski, M. and Milgrom, M. (2012) International Journal of Modern Physics D, 21, 1230003.arXiv:1301.3907
[10]  Verlinde, E. (2011) Journal of High Energy Physics, 4, 29-55. arXiv:1001.0785v1 [hep-th]
https://doi.org/10.1007/JHEP04(2011)029
[11]  Verlinde, E. (2016) Emergent Gravity and the Dark Universe. arXiv:1611.02269v2 [hep-th]
[12]  Tatum, E.T. and Seshavatharam, U.V.S. (2018) Journal of Modern Physics, 9, 1469-1483.
https://doi.org/10.4236/jmp.2018.98091
[13]  Li, E. (2018) Modelling Mass Distribution of the Milky Way Galaxy Using Gaia’s Billion-Star Map.
https://arxiv.org/ftp/arxiv/papers/1612/1612.07781.pdf
[14]  Tatum, E.T. (2018) Journal of Modern Physics, 9, 1564-1567.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133