Evolutionary genetics of
invasive species has been unexplored in Argentina. Invasive alien species (IAS)
have a wide geographical distribution, characteristic life cycles and great
ability to adapt, establish and spread in a new environment. Recent advances in
novel molecular technologies, the use of higher resolution genetic markers, and
the research development on genetic variation of invasive species consolidated
the importance of genetic aspects in the invasion process. Undoubtedly, the
growing concern for the disturbances generated by invasive species on
biodiversity and functioning of ecosystems was also determinant for the
inclusion of the Invasion Biology within the broad field of Evolutionary
Biology including relevant examples that address the evolutionary genetic
aspects of biological invasions. Recent studies suggest that the invasion
success of many species depends on their ability to respond to natural
selection. Although the number of invasive species registered in Argentina far
exceeds 600, little research has been done on invasive mammal species and only
five of them were hitherto genetically analyzed. Presuming that invasion
genetics is incorporated into the agenda of control and management
organizations, it would allow integrating the ecological, genetic, and
evolutionary biology aspects for knowledge of invasive species widely
distributed in Argentina. The objective of this article is to highlight the
importance of evaluating the genetic structure of invasive species for their
management and to inform about the invasive species of mammals that were
introduced in Argentina and have been or are being analyzed genetically.
References
[1]
Mack, R.N., Simberloff, D., Lonsdale, M.W., Evans, H., Clout, M., et al. (2000) Biotic Invasions: Causes, Epidemiology, Global Consequences and Control. Ecological Applications, 10, 689-710.
https://doi.org/10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2
[2]
Williamson, M. (1996) Biological Invasions. Chapman & Hall, London, 244 p.
[3]
Cox, G.W. (2004) Alien Species and Evolution: The Evolutionary Ecology of Exotic Plants, Animals, Microbes, and Interacting Native Species.
[4]
Sax, D.F., Stachowicz, J.J. and Gaines, S.D. (2005) Species Invasions: Insights into Ecology, Evolution and Biogeography.
[5]
Lee, C.E. (2002) Evolutionary Genetics of Invasive Species. Trends in Ecology & Evolution, 17, 386-391.
https://doi.org/10.1016/S0169-5347(02)02554-5
[6]
Gilchrist, G.W. and Lee, C.E. (2007) All Stressed out and Nowhere to Go: Does Evolvability Limit Adaptation in Invasive Species? Genetica, 129, 127-132. https://doi.org/10.1007/s10709-006-9009-5
[7]
Darling, J.A. and Blum, M.J. (2007) DNA-Based Methods for Monitoring Invasive Species: A Review and Prospectus. Biological Invasions, 9, 751-765. https://doi.org/10.1007/s10530-006-9079-4
[8]
Tsutsui, N.D., Suarez, A.V., Holway, D.A. and Case, T.J. (2000) Reduced Genetic Variation and the Success of an Invasive Species. Proceedings of the National Academy of Sciences, 97, 5948-5953.
https://doi.org/10.1073/pnas.100110397
[9]
Abdelkrim, J., Pascal, M., Calmet, C. and Samadi, S. (2005) Importance of Assessing Population Genetic Structure before Eradication of Invasive Species: Examples from Insular Norway Rat Populations. Conservation Biology, 19, 1509-1518. https://doi.org/10.1111/j.1523-1739.2005.00206.x
[10]
Zhan, A., Darling, J.A., Bock, D.G., Lacoursière-Roussel, A., MacIsaac, H.J., et al. (2012) Complex Genetic Patterns in Closely Related Colonizing Invasive Species. Ecology and Evolution, 2, 1331-1346.
https://doi.org/10.1002/ece3.258
[11]
Chau, L.M., Hanna, C., Jenkins, L.T., Kutner, R.E., Burns, E.A., et al. (2015) Population Genetic Structure of the Predatory, Social Wasp Vespula pensylvanica in Its Native and Invasive Range. Ecology and Evolution, 5, 5573-5587. https://doi.org/10.1002/ece3.1757
[12]
Sakai, A.K., Allendorf, F.W., Holt, J.S., Lodge, D.M., Molofsky, J., et al. (2001) The Population Biology of Invasive Species. Annual Review of Ecology and Systematics, 32, 305-332.
https://doi.org/10.1146/annurev.ecolsys.32.081501.114037
[13]
Liebl, A.L., Schrey, A.W., Andrew, S.C., Sheldon, E.L. and Griffith, S.C. (2015) Invasion Genetics: Lessons from a Ubiquitous Bird, the House Sparrow Passer Domestics. Current Zoology, 61, 465-476.
https://doi.org/10.1093/czoolo/61.3.465
[14]
Keller, S. and Taylor, D. (2010) Genomic Admixture Increases Fitness during a Biological Invasion. Journal of Evolutionary Biology, 23, 1720-1731. https://doi.org/10.1111/j.1420-9101.2010.02037.x
[15]
Verhoeven, K.J., Macel, M., Wolfe, L.M. and Biere, A. (2011) Population Admixture, Biological Invasions and the Balance between Local Adaptation and Inbreeding Depression. Proceedings of the Royal Society of London B: Biological Sciences, 278, 2-8. https://doi.org/10.1098/rspb.2010.1272
[16]
Estoup, A., Ravigné, V., Hufbauer, R., Vitalis, R., Gautier, M., et al. (2016) Is There a Genetic Paradox of Biological Invasion? Annual Review of Ecology, Evolution, and Systematics, 47, 51-72.
https://doi.org/10.1146/annurev-ecolsys-121415-032116
[17]
Kolbe, J.J., Glor, R.E., Schettino, L.R., Lara, A.C., Larson, A., et al. (2004) Genetic Variation Increases during Biological Invasion by a Cuban Lizard. Nature, 431, 177. https://doi.org/10.1038/nature02807
[18]
Lavergne, S. and Molofsky, J. (2007) Increased Genetic Variation and Evolutionary Potential Drive the Success of an Invasive Grass. Proceedings of the National Academy of Sciences, 104, 3883-3888.
https://doi.org/10.1073/pnas.0607324104
[19]
Lee, C.E. and Petersen, C.H. (2002) Genotype-by-Environment Interaction for Salinity Tolerance in the Freshwater-Invading Copepod Eurytemora affinis. Physiological and Biochemical Zoology, 75, 335-344.
https://doi.org/10.1086/343138
[20]
Huey, R.B., Gilchrist, G.W., Carlson, M.L., Berrigan, D. and Serra, L.S. (2000) Rapid Evolution of a Geographic Cline in Size in an Introduced Fly. Science, 287, 308-309. https://doi.org/10.1126/science.287.5451.308
[21]
Williams, C.K. and Moore, R. (1989) Phenotypic Adaptation and Natural Selection in the Wild Rabbit, Oryctolagus cuniculus, in Australia. The Journal of Animal Ecology, 495-507. https://doi.org/10.2307/4844
[22]
Weber, E. and Schmid, B. (1998) Latitudinal Population Differentiation in Two Species of Solidago (Asteraceae) Introduced into Europe. American Journal of Botany, 85, 1110-1121. https://doi.org/10.2307/2446344
[23]
Hebert, P.D., Cywinska, A. and Ball, S.L. (2003) Biological Identifications through DNA Barcodes. Proceedings of the Royal Society of London B: Biological Sciences, 270, 313-321. https://doi.org/10.1098/rspb.2002.2218
[24]
Luikart, G., England, P.R., Tallmon, D., Jordan, S. and Taberlet, P. (2003) The Power and Promise of Population Genomics: From Genotyping to Genome Typing. Nature Reviews Genetics, 4, 981-994.
https://doi.org/10.1038/nrg1226
[25]
Quiroz, C.L., Pauchard, A., Cavieres, L.A. and Anderson, C.B. (2009) Análisis Cuantitativo de la investigación en invasiones biológicas en Chile: Tendencias y desafíos. Revista Chilena de Historia Natural, 82, 497-505.
https://doi.org/10.4067/S0716-078X2009000400005
[26]
Lizarralde, M. (2016) Especies exóticas invasoras (EEI) en Argentina: Categorización de mamíferos invasores y alternativas de manejo. Mastozoología Neotropical, 23, 267-277.
[27]
Ballari, S.A., Anderson, C.B. and Valenzuela, A.E. (2016) Understanding Trends in Biological Invasions by Introduced Mammals in Southern South America: A Review of Research and Management. Mammal Review, 46, 229-240. https://doi.org/10.1111/mam.12065
[28]
Lizarralde, M., Escobar, J. and Deferrari, G. (2004) Invader Species in Argentina: A Review about the Beaver (Castor canadensis) Population Situation on Tierra del Fuego Ecosystem. Interciencia, 29, 352-356.
[29]
Lizarralde, M., Escobar, J., Deferrari, G. and Fasanella, M. (2008) El castor austral. Investigación y ciencia, 379, 58-64.
[30]
Fasanella, M., Poljak, S. and Lizarralde, M.S. (2010) Invasive North American Beaver (Castor canadensis): The Distribution of Mitochondrial Variation across the Archipelago of Tierra del Fuego. Mastozoología Neotropical, 17, 43-52.
[31]
Fasanella, M. and Lizarralde, M.S. (2012) The Invasive Beaver Castor canadensis in the Tierra del Fuego Archipelago: A Mitochondrial DNA and Spatial Genetic Structure. In: Blanco, J.J.a.F.A.T., Ed., Invasive Species: Threats, Ecological Impact and Control Methods, New York, 101-122.
[32]
Gabrielli, M., Cardoso, Y.P., Benitez, V., Gozzi, A., Guichón, M., et al. (2014) Genetic Characterization of Callosciurus (Rodentia: Sciuridae) Asiatic Squirrels Introduced in Argentina. Italian Journal of Zoology, 81, 328-343. https://doi.org/10.1080/11250003.2014.940006
[33]
Bonino, N.A. and Soriguer, R.C. (2008) Genetic Lineages of Feral Populations of the Oryctolagus cuniculus (Leporidae, Lagomorpha) in Argentina. Mammalia, 72, 355-357. https://doi.org/10.1515/MAMM.2008.051
[34]
Gabrielli, M., Fasanella, M., Poljak, S. and Lizarralde, M.S. (2008) Variabilidad del ADN Mitocondrial en una población de jabalí (Sus scrofa) del Parque Nacional El Palmar. XXII Jornadas Argentinas de Mastozoología Córdoba.
[35]
Gabrielli, M., Fasanella, M., Poljak, S., Merino, M. and Lizarralde, M. (2008) Análisis de la variabilidad genética del jabalí (Sus scrofa) en una población del Parque Nacional El Palmar de interés para su manejo como invasora. M. III Congreso Nacional de la Conservación de la Biodiversidad Buenos Aires.
[36]
Sagua, M., Figueroa, C., Carpinetti, B., Farace, L., Acosta, D., et al. (2014) Análisis de la Variación Genética de las Poblaciones de Jabalí (Sus scrofa) de Argentina mediante el Gen Mitocondrial Citocromo b. XXVII Jornadas Argentinas de Mastozoología Esquel.
[37]
Poljak, S., Confalonieri, V., Fasanella, M., Gabrielli, M. and Lizarralde, M.S. (2010) Phylogeography of the Armadillo Chaetophractus villosus (Dasypodidae Xenarthra): Post-Glacial Range Expansion from Pampas to Patagonia (Argentina). Molecular Phylogenetics and Evolution, 55, 38-46.
https://doi.org/10.1016/j.ympev.2009.12.021
[38]
Pietrek, A.G. and Fasola, L. (2014) Origin and History of the Beaver Introduction in South America. Mastozoología Neotropical, 21, 355-359.
[39]
Wu, G.-S., Yao, Y.-G., Qu, K.-X., Ding, Z.-L., Li, H., et al. (2007) Population Phylogenomic Analysis of Mitochondrial DNA in Wild Boars and Domestic Pigs Revealed Multiple Domestication Events in East Asia. Genome Biology, 8, R245. https://doi.org/10.1186/gb-2007-8-11-r245
[40]
Scandura, M., Iacolina, L., Crestanello, B., Pecchioli, E., Di Benedetto, M., et al. (2008) Ancient vs. Recent Processes as Factors Shaping the Genetic Variation of the European Wild Boar: Are the Effects of the Last Glaciation Still Detectable? Molecular Ecology, 17, 1745-1762. https://doi.org/10.1111/j.1365-294X.2008.03703.x
[41]
Poljak, S., Escobar, J., Deferrari, G. and Lizarralde, M. (2007) Un nuevo mamífero introducido en la Tierra del Fuego: El “peludo” Chaetophractus villosus (Mammalia, Dasypodidae) en Isla Grande. Revista Chilena de Historia Natural, 80, 285-294. https://doi.org/10.4067/S0716-078X2007000300003
[42]
Pochon, X., Bott, N.J., Smith, K.F. and Wood, S.A. (2013) Evaluating Detection Limits of Next-Generation Sequencing for the Surveillance and Monitoring of International Marine Pests. PLoS ONE, 8, e73935.
https://doi.org/10.1371/journal.pone.0073935
[43]
Mahon, A.R., Nathan, L.R. and Jerde, C.L. (2014) Meta-Genomic Surveillance of Invasive Species in the Bait Trade. Conservation Genetics Resources, 6, 563-567. https://doi.org/10.1007/s12686-014-0213-9
[44]
Hampton, J.O., Spencer, P., Alpers, D.L., Twigg, L.E., Woolnough, A.P., et al. (2004) Molecular Techniques, Wildlife Management and the Importance of Genetic Population Structure and Dispersal: A Case Study with Feral Pigs. Journal of Applied Ecology, 41, 735-743. https://doi.org/10.1111/j.0021-8901.2004.00936.x
[45]
Berry, O., Algar, D., Angus, J., Hamilton, N., Hilmer, S., et al. (2012) Genetic Tagging Reveals a Significant Impact of Poison Baiting on an Invasive Species. The Journal of Wildlife Management, 76, 729-739.
https://doi.org/10.1002/jwmg.295
[46]
Bebber, D.P., Ramotowski, M.A. and Gurr, S.J. (2013) Crop Pests and Pathogens Move Polewards in a Warming World. Nature Climate Change, 3, 985. https://doi.org/10.1038/nclimate1990
[47]
Adams, A., van Heezik, Y., Dickinson, K. and Robertson, B. (2014) Identifying Eradication Units in an Invasive Mammalian Pest Species. Biological Invasions, 16, 1481-1496.
[48]
Alphey, L., McKemey, A., Nimmo, D., Neira Oviedo, M., Lacroix, R., et al. (2013) Genetic Control of Aedes Mosquitoes. Pathogens and Global Health, 107, 170-179. https://doi.org/10.1179/2047773213Y.0000000095
[49]
Klassen, W. and Curtis, C. (2005) History of the Sterile Insect Technique. In: Dyck, V.A., Hendrichs, J. and Robinson, A.S., Eds., Sterile Insect Technique, New York, 3-36. https://doi.org/10.1007/1-4020-4051-2_1
[50]
Esvelt, K.M., Smidler, A.L., Catteruccia, F. and Church, G.M. (2014) Concerning RNA-Guided Gene Drives for the Alteration of Wild Populations. eLife, 3, e03401. https://doi.org/10.7554/eLife.03401
[51]
Webber, B.L., Raghu, S. and Edwards, O.R. (2015) Opinion: Is CRISPR-Based Gene Drive a Biocontrol Silver Bullet or Global Conservation Threat? Proceedings of the National Academy of Sciences, 112, 10565-10567.
https://doi.org/10.1073/pnas.1514258112
[52]
Novillo, A. and Ojeda, R.A. (2008) The Exotic Mammals of Argentina. Biological Invasions, 10, 1333-1344.
https://doi.org/10.1007/s10530-007-9208-8
[53]
Simberloff, D. (2001) Biological Invasions—How Are They Affecting Us, and What Can We Do about Them? Western North American Naturalist, 308-315.
[54]
Chown, S.L., Hodgins, K.A., Griffin, P.C., Oakeshott, J.G., Byrne, M., et al. (2015) Biological Invasions, Climate Change and Genomics. Evolutionary Applications, 8, 23-46. https://doi.org/10.1111/eva.12234
[55]
Simberloff, D., Martin, J.-L., Genovesi, P., Maris, V., Wardle, D.A., et al. (2013) Impacts of Biological Invasions: What’s What and the Way Forward. Trends in Ecology & Evolution, 28, 58-66.
https://doi.org/10.1016/j.tree.2012.07.013