During the passage of Typhoon 0918 (Melor) over southern Honshu in Japan on 7 and 8 October 2009, strong winds with extremely high turbulence fluctuations were observed over Shirataki Mountain and the surrounding mountains in Shimonoseki, Yamaguchi Prefecture, Japan. These strong winds caused damage to wind turbine blades at the Shiratakiyama Wind Farm owned by Kinden Corporation. In order to investigate the causes of the blade damage, the airflow characteristics from the time of the incidences are first simulated in detail with the combined use of the WRF-ARW mesoscale meteorological model and the RIAM-COMPACT LES turbulence model (CFD model). Subsequently, in order to evaluate the wind pressure acting on the wind turbine blades, an airflow analysis is separately performed for the vicinity of the blades with the RANS turbulence model. Finally, the stress on the blades is investigated using the FEM with the RANS analysis results as the boundary conditions.
References
[1]
Skamarock, W.C., et al. (2008) A Description of the Advanced Research WRF Version 3. http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf
[2]
Uchida, T. and Ohya, Y. (2008) Verification of the Prediction Accuracy of Annual Energy Output at Noma Wind Park by the Non-Stationary and Non-Linear Wind Synopsis Simulator, RIAM-COMPACT. Journal of Fluid Science and Technology, 3, 344-358. https://doi.org/10.1299/jfst.3.344
[3]
Uchida, T. and Ohya, Y. (2008) Micro-Siting Technique for Wind Turbine Generators by Using Large-Eddy Simulation. Journal of Wind Engineering & Industrial Aerodynamics, 96, 2121-2138. https://doi.org/10.1016/j.jweia.2008.02.047
[4]
Uchida, T., Maruyama, T. and Ohya, Y. (2011) New Evaluation Technique for WTG Design Wind Speed Using a CFD-Model-Based Unsteady Flow Simulation with Wind Direction Changes. Modelling and Simulation in Engineering, 2011, Article ID: 941870. http://dx.doi.org/10.1155/2011/941870
[5]
Uchida, T., Ohya, Y. and Sugitani, K. (2011) Comparisons between the Wake of a Wind Turbine Generator Operated at Optimal Tip Speed Ratio and the Wake of a Stationary Disk. Modelling and Simulation in Engineering, 2011, Article ID: 749421. http://dx.doi.org/10.1155/2011/749421
[6]
Uchida, T. and Ohya, Y. (2011) Latest Developments in Numerical Wind Synopsis Prediction Using the RIAM-COMPACT CFD Model. Energies, 4, 458-474.
https://doi.org/10.3390/en4030458
[7]
Uchida, T. (2017) High-Resolution LES of Terrain-Induced Turbulence around Wind Turbine Generators by Using Turbulent Inflow Boundary Conditions. Open Journal of Fluid Dynamics, 7, 511-524. https://doi.org/10.4236/ojfd.2017.74035
[8]
Uchida, T. (2017) Large-Eddy Simulation and Wind Tunnel Experiment of Airflow over Bolund Hill. Open Journal of Fluid Dynamics, 8, 30-43.
https://doi.org/10.4236/ojfd.2018.81003
[9]
Uchida, T. (2017) High-Resolution Micro-Siting Technique for Large Scale Wind Farm Outside of Japan Using LES Turbulence Model. Energy and Power Engineering, 9, 802-813. https://doi.org/10.4236/epe.2017.912050
[10]
Uchida, T. (2017) CFD Prediction of the Airflow at a Large-Scale Wind Farm above a Steep, Three-Dimensional Escarpment. Energy and Power Engineering, 9, 829-842.
https://doi.org/10.4236/epe.2017.913052
[11]
Smagorinsky, J. (1963) General Circulation Experiments with the Primitive Equations, Part 1, Basic Experiments. Monthly Weather Review, 91, 99-164.
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
[12]
Sumner, J., Watters, C.S. and Masson, C. (2010) Review: CFD in Wind Energy: The Virtual, Multiscale Wind Tunnel. Energies, 3, 989-1013.
https://doi.org/10.3390/en3050989