全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Impacts of Climate Change on the Hydrology of a Small Brazilian Headwater Catchment Using the Distributed Hydrology-Soil-Vegetation Model

DOI: 10.4236/ajcc.2018.72021, PP. 355-366

Keywords: Climate Changes, RCP4.5 and RCP8.5 Scenarios, Hydrological Model, Discharge

Full-Text   Cite this paper   Add to My Lib

Abstract:

Climate change is one of the greatest issues for human society. The objective of this study is to assess the impacts of future climate change on seasonal average discharge and monthly water budget in a small headwater catchment, located on the Grande River basin, in Minas Gerais, Brazil. The assessment is carried out using the hydrology model, DHSVM. The atmospheric forcing to drive the Distributed Hydrology-Soil-Vegetation Model (DHSVM) is derived from the downscaling of the HadGEM2-ES projections by the Eta Regional Climate Model, at 5-km high resolution. The projections assume the RCP4.5 and RCP8.5 IPCC AR5 emission scenarios. Baseline period was taken between 1961 and 1990. The projections are assessed in three time slices (2011-2040, 2041-2070 and 2071-2099). The climate change is assessed in time slices of 30 years and in comparison against the baseline period to evaluate the hydrological changes in the catchment. The results showed differences in the hydrological behavior between the emission scenarios and though time slices. Reductions in the magnitude of the seasonal average discharge and monthly water budget may alter the water availability. Under the RCP4.5 scenario, results show greater reductions in the water availability in the first time slice, whereas under RCP8.5 scenario greater reductions are indicated in the third time slice.

References

[1]  Alvarenga, L.A., Mello, C.R., Colombo, A. and Cuartas, L.A. (2017) Hydrologic Impacts Due to the Changes in Riparian Buffer in a Headwater Watershed. Cerne, 23, 95-102.
https://doi.org/10.1590/01047760201723012205
[2]  Pinto, L.C., Mello, C.R. and ávila, L.F. (2013) Water Quality Indicators in the Mantiqueira Range Region, Minas Gerais State. Cerne, 19, 687-692.
https://doi.org/10.1590/S0104-77602013000400020
[3]  Alvarenga, L.A., Mello, C.R., Colombo, A., Cuartas, L.A. and Bowling, L.C. (2016a) Assessment of Land Cover Change on the Hydrology of a Brazilian Headwater Watershed Using the Distributed Hydrology-Soil-Vegetation Model. CATENA, 143, 7-17.
https://doi.org/10.1016/j.catena.2016.04.001
[4]  Pinto, L.C., Mello, C.R., Norton, L.D., Poggere, G.C., Owens, P.R. and Curi, N. (2018) A Hydropedological Approach to a Mountainous Clayey Humic Dystrudept in the Mantiqueira Range, Southeastern Brazil. Scientia Agricola, 75, 60-69.
https://doi.org/10.1590/1678-992x-2016-0144
[5]  Coelho, C.A., Oliveira, C.P., Ambrizzi, T., Reboita, M.S., Carpenedo, C.B., Campos, J.L.P.S., Tomaziello, A.C.N.T., Pampuch, L.A., Custódio, M.S., Dutra, L.M.M., Rocha, R.P. and Rehbein, A. (2016) The 2014 Southeast Brazil Austral Summer Drought: Regional Scale Mechanisms and Teleconnections. Climate Dynamics, 46, 11-12.
https://doi.org/10.1007/s00382-015-2800-1
[6]  Natividade, U.A., Garcia, S.R. and Torres, R.R. (2017) Tendência dos índices de extremos climáticos observados e projetados no Estado de Minas Gerais. Revista Brasileira de Meteorologia, 32, 600-614.
https://doi.org/10.1590/0102-7786324008
[7]  Nobre, C.A., Marengo, J.A., Seluchi, M.E., Cuartas, L.A. and Alves, L.M. (2016) Some Characteristics and Impacts of the Drought and Water Crisis in Southeastern Brazil during 2014 and 2015. Journal of Water Resource and Protection, 8, 252-262.
https://doi.org/10.4236/jwarp.2016.82022
[8]  Cavalcanti, I.F.A., Nunes, L.H., Marengo, J.A., Gomes, J.L., Silveira, V.P. and Castellano, M.S. (2017) Projections of Precipitation Changes in Two Vulnerable Regions of São Paulo State, Brazil. American Journal of Climate Change, 6, 268-293.
https://doi.org/10.4236/ajcc.2017.62014
[9]  Lyra, A., Imbach, P., Rodriguez, D., Chou, S.C., Georgiou, S. and Rarofolo, L. (2017) Projections of Climate Change Impacts on Central America Tropical Rainforest. Climatic Change, 141, 93-105.
https://doi.org/10.1007/s10584-016-1790-2
[10]  Salviano, M.F., Groppo, J.D. and Pellegrino, G.Q. (2016) Análise de tendências em dados de precipitação e temperatura no Brasil. Revista Brasileira de Meteorologia, 31, 64-73.
https://doi.org/10.1590/0102-778620150003
[11]  Neto, A.R., Paz, A.R., Marengo, J.A. and Chou, S.C. (2016) Hydrological Processes and Climate Change in Hydrographic Regions of Brazil. Journal of Water Resource and Protection, 8, 1103-1127.
https://doi.org/10.4236/jwarp.2016.812087
[12]  Alvarenga, L.A., Mello, C.R., Colombo, A., Cuartas, L.A. and Chou, S.C. (2016b) Hydrological Responses to Climate Changes in a Headwater Watershed. Ciência e Agrotecnologia, 40, 647-657.
https://doi.org/10.1590/1413-70542016406027716
[13]  Cuo, L., Lettenmaier, D.P., Alberti, M. and Richey, J.E. (2009) Effects of a Century of Land Cover and Climate Change on the Hydrology of the Puget Sound Basin. Hydrological Processes, 23, 907-933.
https://doi.org/10.1002/hyp.7228
[14]  Dickerson-Lange, S. and Mitchell, R. (2014) Modeling the Effects of Climate Change Projections on Streamflow in the Nooksack River Basin, Northwest Washington. Hydrological Processes, 28, 5236-5250.
https://doi.org/10.1002/hyp.10012
[15]  Safeeq, M. and Fares, A. (2012) Hydrologic Response of a Hawaiian Watershed to Future Climate Change Scenarios. Hydrological Processes, 26, 2745-2764.
https://doi.org/10.1002/hyp.8328
[16]  Oliveira, V.A., Mello, C.R., Viola, M.R. and Srinivasan, R. (2017) Assessment of Climate Change Impacts on Streamflow and Hydropower Potential in the Headwater Region of the Grande River Basin, Southeastern Brazil. International Journal of Climatology, 37, 1-19.
https://doi.org/10.1002/joc.5138
[17]  Viola, M.R., Mello, C.R., Chou, S.C., Yanagi, S.N. and Gomes, J.L. (2015) Assessing Climate Change Impacts on Upper Grande River Basin Hydrology, Southeast Brazil. International Journal of Climatology, 35, 1054-1068.
https://doi.org/10.1002/joc.4038
[18]  Wigmosta, M.S., Vail, L.W. and Lettenmaier, D.P. (1994) A Distributed Hydrology-Vegetation Model for Complex Terrain. Water Resources Research, 30, 1665-1679.
https://doi.org/10.1029/94WR00436
[19]  Swinbank, W.C. (1963) Long-Wave Radiation from Clear Skies. Quarterly Journal of the Royal Meteorological Society, 89, 339-348.
https://doi.org/10.1002/qj.49708938105
[20]  Oliveira, A.S., Silva, A.M., Mello, C.R. and Alves, G.J. (2014) Stream Flow Regime of Springs in the Mantiqueira Mountain Range Region, Minas Gerais State. Cerne, 20, 343-349.
https://doi.org/10.1590/01047760201420031268
[21]  Menezes, M.D., Junqueira Júnior, J.A., Mello, C.R., Silva, A.M., Curi, N. and Marques, J.J. (2009) Dinamica hidrológica de duas nascentes, associada ao uso do solo, características pedológicas e atributos físico-hídricos na sub-bacia hidrográfica do Ribeirão Lavrinha-Serra da Mantiqueira (MG). Scientia Forestalis, 37, 175-184.
[22]  Chou, S.C., Lyra, A., Mourão, C., Dereczynski, C., Pilotto, I., Gomes, J., Bustamante, J., Tavares, P., Silva, A., Rodrigues, D., Campos, D., Chagas, D., Sueiro, G., Siqueira, G., Nobre, P. and Marengo, J. (2014) Evaluation of the Eta Simulations Nested in Three Global Climate Models. American Journal of Climate Change, 3, 438-454.
https://doi.org/10.4236/ajcc.2014.35039
[23]  Chou, S.C., Lyra, A., Mourão, C., Dereczynski, C., Pilotto, I., Gomes, J., Bustamante, J., Tavares, P., Silva, A., Rodrigues, D., Campos, D., Chagas, D., Sueiro, G., Siqueira, G. and Marengo, J. (2014) Assessment of Climate Change over South America under RCP 4.5 and 8.5 Downscaling Scenarios. American Journal of Climate Change, 3, 512-527.
https://doi.org/10.4236/ajcc.2014.35043
[24]  Mesinger, F., Chou, S.C., Gomes, J.L., Jovic, D., Bastos, P., Bustamante, J.F., Lazic, L., Lyra, A.A., Morelli, S., Ristic, I. and Veljovic, K. (2012) An Upgraded Version of the Eta Model. Meteorology and Atmospheric Physics, 116, 63-79.
https://doi.org/10.1007/s00703-012-0182-z
[25]  IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, 1535.
https://doi.org/10.1017/CBO9781107415324
[26]  Moriasi, D.N., Arnold, J.G., van liew, M.W., Bingner, R.L., Harmel, R.D. and Veith, T.L. (2007) Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50, 885-900.
https://doi.org/10.13031/2013.23153
[27]  Lyra, A., Tavares, P., Chou, S.C., Sueiro, G., Dereczynski, C., Sondermann, M., Silva, A., Marengo, J. and Giarolla, A. (2017) Climate Change Projections over Three Metropolitan Regions in Southeast Brazil Using the Non-Hydrostatic Eta Regionalclimate Model at 5-km Resolution. Theoretical and Applied Climatology, 132, 663-682.
https://doi.org/10.1007/s00704-017-2067-z
[28]  Mello, C.R., Fernandes, L., Norton, L.D., Silva, A.M., Mello, J.M. and Beskow, S. (2011) Spatial Distribution of Top Soil Water Content in an Experimental Catchment of Southeast Brazil. Scientia Agricola, 68, 285-294.
https://doi.org/10.1590/S0103-90162011000300003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133