Pedunculate oak and sessile oak are important natural species in the Upper Rhine Valley. The increasing mortality of these oak species has been observed since the 1980s in this region, mainly due to severe droughts. Turkey oak is known to be highly productive and drought-resistant. The goal of this article is therefore to investigate the adaptability to drought of these three young oak species growing at the same site, and to show to what extent Turkey oak can be substituted for these native oak species. Stand measurements and retrospective analyses of radial growth were performed within the framework of the eight-year-old “Mooswald” afforestation experiment in order to determine stand volume, mortality and resistance/resilience to drought for each species. Turkey oak shows significantly higher stand volume and significantly lower mortality than sessile oak. Values of these two parameters for Turkey oak and sessile oak are not significantly different from those of pedunculate oak. However, Turkey oak is not more resistant to drought than the other oak species. Sessile oak has the highest mortality and the smallest stand volume, while pedunculate oak is the least resilient to drought. These results are only a trend that must be confirmed in older stand stages and investigation in young stands must continue, supported by better monitoring and improved tools.
References
[1]
Kändler, G. and Cullmann, D. (2016) Regionale Auswertung der Bundeswaldinventur 3—Regierungsbezirk Freiburg. Report, Forstliche Versuchs- und Forschungsanstalt, Baden-Württemberg.
[2]
Gaertig, T., et al. (2002) The Impact of Soil Aeration on Oak Decline in Southwestern Germany. Forest Ecology and Management, 159, 15-25.
https://doi.org/10.1016/S0378-1127(01)00706-X
[3]
Fischer, R. and Hartmann, G. (1999) Decline of European and Sessile Oak. In: UN/ECE and EC. Forest Conditions in Europe. Executive Report, Geneve, Brussels, 7-9.
[4]
Pachauri, R.K., Meyer, L.A., et al., Eds. (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC 2014, Geneva, 151.
[5]
Spathelf, P., et al. (2014) Climate Change Impacts in European Forests: The Expert Views of Local Observers. Annals of Forest Science, 71, 131-137.
https://doi.org/10.1007/s13595-013-0280-1
[6]
Lorenz, M. and Becher, G. (2012) Forest Condition in Europe: 2012 Technical Report of ICP Forests. ICP Forests, Hamburg.
http://literatur.ti.bund.de/digbib_extern/dn051886.pdf
[7]
Santini, A., et al. (1994) Preliminary Dendroecological Survey on Pedunculate Oak (Quercus robur L.) Stands in Tuscany (Italy). Annales des Sciences Forestières, 51, 1-10. https://doi.org/10.1051/forest:19940101
[8]
Bréda, N., et al. (1993) Field Comparison of Transpiration, Stomatal Conductance and Vulnerability to Cavitation of Quercus petraea and Quercus robur under Water Stress. Annales des Sciences Forestières, 50, 571-582.
https://doi.org/10.1051/forest:19930606
[9]
Neophytou, C. and Michiels, H.G. (2013) Upper Rhine Valley: A Migration Crossroads of Middle European Oaks. Forest Ecology and Management, 304, 89-98.
https://doi.org/10.1016/j.foreco.2013.04.020
[10]
Eaton, E., et al. (2016) Quercus robur and Quercus petraea in Europe: Distribution, Habitat, Usage and Threats. In: San-Miguel-Ayanz, J., et al., Eds., European Atlas of Forest Tree Species, Publication Official EU, Luxembourg, 160-163.
[11]
De Rigo, D., et al. (2016) Quercus cerris in Europe: Distribution, Habitat, Usage and Threats. In: San-Miguel-Ayanz, J., et al., Eds., European Atlas of Forest Tree Species, Publication Official EU, Luxembourg, 148-149.
[12]
Rameau, J.-C., et al. (2012) Flore Forestière Française: Guide Ecologique Illustré. Vol. 1, Plaines et Collines. Institut pour le Développement Forestier, Paris, 1792 p.
[13]
Cutini, A. (1997) Drought Effects on Canopy Properties and Productivity in Thinned and Unthinned Turkey Oak Stands. Plant Biosystems, 131, 59-65.
https://doi.org/10.1080/11263504.1997.10654167
[14]
Di Filippo, A., et al. (2010) Climate Change and Oak Growth Decline: Dendroecology and Stand Productivity of a Turkey Oak (Quercus cerris L.) Old Stored Coppice in Central Italy. Annals of Forest Science, 67, 706-706.
https://doi.org/10.1051/forest/2010031
[15]
Kätzel, R., et al. (2012) Untersuchungen zu Vitalität, Wuchsleistung und Holzqualität von Zerr-Eichen (Quercus cerris L.) im Kommunalwald von Prenzlau. Archiv für Forstwesen und Landschaftsökologie, 46, 125-132.
[16]
Erteld, W. (1953) Ertragstafelauszüge für den Gebrauch in der Praxis. Vol. 2, Neumann Verlag, Radebeul.
[17]
Ellenberg, H. and Leuschner, C. (2010) Vegetation Mitteleuropas mit den Alpen. 6th Edition, Eugen Ulmer Verlag, Stuttgart.
[18]
Günthardt-Goerg, M.S. (2012) Foliage Response of Young Central European Oaks to Air Warming, Drought and Soil Type. Plant Biology, 15, 185-197.
https://doi.org/10.1111/j.1438-8677.2012.00665.x
[19]
Gallé, A., et al. (2007) Photosynthetic Performance and Water Relations in Young Pubescent Oak (Quercus pubescens) Trees during Drought Stress and Recovery. New Phytologist, 174, 799-810. https://doi.org/10.1111/j.1469-8137.2007.02047.x
[20]
Thomas Fernandez, R., et al. (1997) Drought Response of Young Apple Trees on Three Rootstocks. II. Gas Exchange, Chlorophyll Fluorescence, Water Relations, and Leaf Abscisic Acid. Journal of the American Society for Horticultural Science, 122, 841-848.
[21]
Buhk, C., et al. (2016) On the Influence of Provenance to Soil Quality Enhanced Stress Reaction of Young Beech Trees to Summer Drought. Ecology and Evolution, 6, 8276-8290. https://doi.org/10.1002/ece3.2472
[22]
Ponton, S., et al. (2002) Comparison of Water-Use Efficiency of Seedlings from Two Sympatric Oak Species: Genotype × Environment Interactions. Tree Physiology, 22, 413-422. https://doi.org/10.1093/treephys/22.6.413
[23]
Thomas, F.M. (2000) Growth and Water Relations of Four Deciduous Tree Species (Fagus sylvatica L., Quercus petraea [MATT.] LIEBL., Q-pubescens WILLD., Sorbus aria [L.] CR.) Occurring at Central-European Tree-Line Sites on Shallow Calcareous Soils: Physiological Reactions of Seedlings to Severe Drought. Flora, 195, 104-115. https://doi.org/10.1016/S0367-2530(17)30958-1
[24]
Villinger, E. (2008) Geologie der Freiburger Bucht. In: Körner, H., Ed., Die Mooswälder: Natur-und Kulturgeschichte der Breisgauer Bucht, Lavori, Freiburg, 15-42.
[25]
Hügin, G. (1990) Die Mooswälder der Freiburger Bucht: Wahrzeichen einer alten Kulturlandschaft. Gestern-heute ... und morgen? Landesanstalt für Umweltschutz Baden-Württemberg, Karlsruhe, 88 p.
[26]
Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (LUBW), c2015. Grundwasser.
http://www4.lubw.baden-wuerttemberg.de/servlet/is/2693/
[27]
Ningre, F. (1997) Une Définition Raisonnée de la Fourche du Jeune Hêtre. Revue forestière française, 49, 32-40.
[28]
FAO (2002) National Forest Inventory: Field Work Manual.
http://www.fao.org/3/a-ae578e.pdf
[29]
Sheil, D., et al. (1995) The Interpretation and Misinterpretation of Mortality Rate Measures. Journal of Ecology, 83, 331-333. https://doi.org/10.2307/2261571
[30]
Bowers, S., et al. (1989) Stand Volume and Growth: Getting the Numbers. The Woodland Workbook, Forest Measurement. Oregon State University, Corvallis, 26 p.
http://www.cof.orst.edu/cof/fs/kpuettmann/FS%20533/2007/Volume%20and%20growth% 20measurements.pdf
[31]
Wetterdienst DWD. CDC (Climate Data Centre).
http://www.dwd.de/EN/climate_environment/cdc/cdc_node.html
[32]
Svoboda, M., et al. (2012) Standardized Precipitation Index User Guide. World Meteorological Organization, Geneva, 24 p.
[33]
McKee, T.B., et al. (1993) The Relationship of Drought Frequency and Duration to Time Scales. 8th Conference on Applied Climatology, Anaheim, 17-22 January 1993, 6 p. http://clima1.cptec.inpe.br/~rclima1/pdf/paper_spi.pdf
[34]
Allaire, M.-H. (1970) Les Bilans Hydriques. Bioclimatology Department, INRA, 19-35.
[35]
Lloret, F., et al. (2011) Components of Tree Resilience: Effects of Successive Low-Growth Episodes in Old Ponderosa Pine Forests. Oikos, 120, 1909-1920.
https://doi.org/10.1111/j.1600-0706.2011.19372.x
[36]
Rahman, N.A. (1968) A Course in Theoretical Statistics. Charles Griffin and Company, London.
[37]
Sardin, T. (2008) Chênaies Continentales. Guide des Sylvicultures. Office National des Forêts, 456 p.
[38]
Bréda, N. (1998) Analyse Rétrospective de la Croissance Radiale des Chênes de la Forêt Domaniale de la Harth. Scientific Report of ONF/INRA Convention.
http://prodinra.inra.fr/record/25989
[39]
Herpich, J. (2014) Feldstudie zum Vergleich der Wassernutzungseffizienz (WUE) von Jungen, Heimischen und Nichtheimischen Eichen. Master Thesis, Forest Research, University Albert-Ludwigs, Freiburg, 66 p.
[40]
Modrow, T. (2014) Feldstudie zum Vergleich von Feinwurzelparametern Junger Stiel-und Zerreichen. Bachelor Thesis, Forest Research, University Albert-Ludwigs, Freiburg, 76 p.
[41]
Desprez-Lousteau, M.L., Marçais, B., Nageleisen, L.M., Piou, D. and Vannini, A. (2006) Interactive Effects of Drought and Pathogens in Forest Trees. Annals of Forest Science, 63, 597-612. https://doi.org/10.1051/forest:2006040
[42]
Grossnickle, S.C. (2005) Importance of Root Growth in Overcoming Planting Stress. New Forests, 30, 273-294. https://doi.org/10.1007/s11056-004-8303-2
[43]
Mészaros, I. (2007) Leaf Growth and Photosynthetic Performance of Two Co-Existing Oak Species in Contrasting Growing Seasons. Acta Silvatica et Lignaria Hungarica, 3, 7-20.
[44]
Tognetti, R., et al. (1996) Comparison of Sap Flow, Cavitation and Water Status of Quercus petraea and Quercus cerris Trees with Special Reference to Computer Tomography. Plant, Cell and Environment, 19, 928-938.
https://doi.org/10.1111/j.1365-3040.1996.tb00457.x
[45]
Schmull, M. and Thomas, F.M. (2000) Morphological and Physiological Reactions of Young Deciduous Trees (Quercus robur L., Q. petraea [Matt.] Liebl., Fagus sylvatica L.) to Waterlogging. Plant and Soil, 225, 227-242.
https://doi.org/10.1023/A:1026516027096
[46]
Epron, D. and Dreyer, E. (1993) Long-Term Effects of Drought on Photosynthesis of Adult Oak Trees [Quercus petraea (Matt.) Liebl. and Quercus robur L.] in a Natural Stand. New Phytologist, 125, 381-389.
https://doi.org/10.1111/j.1469-8137.1993.tb03890.x
[47]
Holmes, R.L., et al. (1986) Users Manual for Program ARSTAN, in Tree-Ring Chronologies of Western North America: California, Eastern Oregon and Northern Great Basin. Laboratory of TreeRing Research: University of Arizona, Tucson, 50-65.
[48]
Bunn, A., et al. (2016) Package “dplR”. Dendrochronology Program Library in R.
http://R-Forge.R-project.org/projects/dplr/