全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Preparation of Fluoroalkyl End-Capped Oligomer/Cyclodextrin Polymer Composites: Development of Fluorinated Composite Material Having a Higher Adsorption Ability toward Organic Molecules

DOI: 10.4236/jeas.2018.82006, PP. 117-138

Keywords: Fluorinated Oligomeric Composite, Cyclodextrin Polymer, Surface Modification, Superoleophilic, Superhydrophobic Property, Separation of Oil and Water, Organic Molecule, VOC, Adsorption Ability

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fluoroalkyl end-capped vinyltrimethoxysilane oligomer
[RF-(CH2CHSi(OMe)3)n-RF; RF = CF(CF3)OCF7, n = 2, 3; RF-(VM)n-RF] was applied to the preparation of fluoroalkyl end-capped vinyltrimethoxysilane oligomer/α-, β-, γ-cyclodextrin polymers (α-, β-, γ-CDPs) composites [RF-(VM-SiO2)n-RF/α-, β-, γ-CDPs] by the sol-gel reaction of the corresponding oligomer in the presence of the α

References

[1]  Crini, G. and Badot, P.-M. (2010) Sorption Process and Pollution—Conventional and Non-Conventional Sorbents for Pollutant Removal from Wastewaters. Presses Universitaires de Franche-Comte, Besançon.
[2]  Crini, G. (2005) Recent Developments in Polysaccharide-Based Materials Used as Adsorbents in Wastewater Treatment. Progress in Polymer Science, 30, 38-70.
https://doi.org/10.1016/j.progpolymsci.2004.11.002
[3]  Bender, M.L. and Komiyama, M. (1978) Cyclodextrin Chemistry. Spronger-Verlag, New York.
https://doi.org/10.1007/978-3-642-66842-5
[4]  Tabushi, I. (1982) Cyclodextrin Catalysis as a Model for Enzyme Action. Accounts of Chemical Research, 15, 66-72.
https://doi.org/10.1021/ar00075a001
[5]  Tang, S., Kong, L., Ou, J., Liu, Y. and Zou, H. (2006) Application of Cross-Linked β-Cyclodextrin Polymer for Adsorption of Aromatic Amino Acids. Journal of Molecular Recognition, 19, 39-48.
https://doi.org/10.1002/jmr.756
[6]  Asanuma, H., Kakazu, M., Shibata, M., Hishiya, T. and Komiyama, M. (1998) Synthesis of Molecularly Imprinted Polymer of β-Cyclodextrin for the Efficient Recognition of Cholesterol. Supramolecular Science, 5, 417-421.
https://doi.org/10.1016/S0968-5677(98)00042-X
[7]  Crini, G., Cosentino, C., Bertini, S., Naggi, A., Torri, G., Vechhi, C., Janus, L. and Morcellet, M. (1998) Solid State NMR Spectroscopy Study of Molecular Motion in Cyclomaltoheptaose (β-Cyclodextrin) Crosslinked with Epichlorohydrin. Carbohydrate Research, 308, 37-45.
https://doi.org/10.1016/S0008-6215(98)00077-9
[8]  Moine, L., Amiel, C., Brown, W. and Guerin, P. (2001) Associations between a Hydrophobically Modified, Degradable, Poly(malic acid) and a β-Cyclodextrin Polymer in Solution. Polymer International, 50, 663-676.
https://doi.org/10.1002/pi.681
[9]  Raoov, M., Mohamad, S. and Abas, M.R. (2014) Synthesis and Characterization of β-Cyclodextrin Functionalized Ionic Liquid Polymer as a Macroporous Material for the Removal of Phenols and As(V). International Journal of Molecular Sciences, 15, 100-119.
https://doi.org/10.3390/ijms15010100
[10]  Yamasaki, H., Nagasawa, Y., Uchida, N. and Fukunaga, K. (2013) Preparation of Spherical Photo-Crosslinkable Hydrogels Having β-Cyclodectrin Powdery Polymer and Their Application as Immobilizing Support for Microbes. Kobunshi Ronbunshu, 70, 572-580.
[11]  Hishiya, T., Shibata, M., Kakazu, M., Asanuma, H. and Komiyama, M. (1999) Molecularly Imprinted Cyclodextrins as Selective Receptors for Steroids. Macromolecules, 32, 2265-2269.
https://doi.org/10.1021/ma9816012
[12]  Crini, G., Bertini, S., Torri, G., Naggi, A., Sforzini, D., Vecchi, C., Janus, L., Lekchiri, Y. and Morcellet, M. (1998) Sorption of Aromatic Compounds in Water Using Insoluble Cyclodextrin Polymers. Journal of Applied Polymer Science, 68, 1973-1978.
https://doi.org/10.1002/(SICI)1097-4628(19980620)68:12<1973::AID-APP11>3.0.CO;2-T
[13]  Kitaoka, M. and Hayashi, K. (2002) Adsorption of Bisphenol A by Cross-Linked β-Cyclodextrin Polymer. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 44, 429-431.
https://doi.org/10.1023/A:1023024004103
[14]  Yu, J.C., Jiang, Z.T., Liu, H.Y., Yu, L. and Zhang, L. (2003) β-Cyclodextrin Epichlorohydrin Copolymer as a Solid-Phase Extraction Adsorbent for Aromatic Compounds in Water Samples. Analytica Chimica Acta, 477, 93-101.
https://doi.org/10.1016/S0003-2670(02)01411-3
[15]  Ameduri, B. and Sawada, H. (2016) Fluorinated Polymers: Volume 1, Synthesis, Properties, Processing and Simulation. RSC, Cambridge.
[16]  Ameduri, B. and Sawada, H. (2016) Fluorinated Polymers: Volume 2, Applications. RSC, Cambridge.
[17]  Sawada, H. (1996) Fluorinated Peroxides. Chemical Reviews, 96, 1779-1808.
https://doi.org/10.1021/cr9411482
[18]  Sawada, H. (2007) Synthesis of Self-Assembled Fluoroalkyl End-Capped Oligomeric Aggregates—Applications of These Aggregates to Fluorinated Oligomeric Nanocomposites. Progress in Polymer Science, 32, 509-533.
https://doi.org/10.1016/j.progpolymsci.2007.02.002
[19]  Sawada, H. (2012) Preparation and Applications of Novel Fluoroalkyl End-Capped Oligomeric Nanocomposites. Polymer Chemistry, 3, 46-65.
https://doi.org/10.1039/C1PY00325A
[20]  Sawada, H., Suzuki, T., Takashima, H. and Takishita, K. (2008) Preparation and Properties of Fluoroalkyl End-Capped Vinyltrimethoxysilane Oligomeric Nanoparticles—A New Approach to Facile Creation of a Completely Superhydrophobic Coating Surface with These Nanoparticles. Colloid and Polymer Science, 286, 1569-1574.
[21]  Oikawa, Y., Saito, T., Yamada, S., Sugiya, M. and Sawada, H. (2015) Preparation and Surface Property of Fluoroalkyl End-Capped Vinyltrimethoxysilane Oligomer/Talc Composite-Encapsulated Organic Compounds: Application for the Separation of Oil and Water. ACS Applied Materials & Interfaces, 7, 13782-13793.
https://doi.org/10.1021/acsami.5b01588
[22]  Suzuki, J., Takegahara, Y., Oikawa, Y., Chiba, M., Yamada, S., Sugiya, M. and Sawada, H. (2017) Preparation of Fluoroalkyl End-Capped Vinyltrimethoxysilane Oligomeric Silica/Poly(tetrafluoroethylene) Nanocomposites Possessing a Superoleophilic/Superhydrophobic Characteristic: Application to the Separation of Oil and Water. Journal of Sol-Gel Science and Technology, 81, 611-622.
https://doi.org/10.1007/s10971-016-4209-7
[23]  Sawada, H. and Nakayama, M. (1991) Synthesis of Fluorine-Containing Organosilicon Oligomers. Journal of the Chemical Society, Chemical Communications, 677-678.
https://doi.org/10.1039/c39910000677
[24]  Su, C., Wang, J., Chen, Z. and Chen, D. (2014) Durable Superhydrophobic and Superoleophilic Filter Paper for Oil-Water Separation Prepared by a Colloidal Deposition Method. Applied Surface Science, 313, 304-310.
https://doi.org/10.1016/j.apsusc.2014.05.207
[25]  Li, J., Wan, H., Ye, Y., Zhou, H. and Chen, J. (2012) One-Step Process to Fabrication of Transparent Superhydrophobic SiO2 Paper. Applied Surface Science, 261, 470-472.
https://doi.org/10.1016/j.apsusc.2012.08.034
[26]  Celia, E., Darmanin, T., de Givenchy, E.T., Amigoni, S. and Guiiard, F. (2013) Recent Advances in Designing Superhydrophobic Surfaces. Journal of Colloid and Interface Science, 402, 1-18.
https://doi.org/10.1016/j.jcis.2013.03.041
[27]  Liu, M. and Jiang, L. (2010) Switchable Adhesion on Liquid/Solid Interfaces. Advanced Functional Materials, 20, 3753-3764.
https://doi.org/10.1002/adfm.201001208
[28]  Pan, Q.M., Wang, M. and Wang, H.B. (2008) Separating Small Amount of Water and Hydrophobic Solvents by Novel Superhydrophobic Copper Meshes. Applied Surface Science, 254, 6002-6006.
https://doi.org/10.1016/j.apsusc.2008.03.034
[29]  Wang, C.X., Yao, T.J., Wu, J., Ma, C., Fan, Z.X., Wang, Z.Y., Cheng, Y.R., Lin, Q. and Yang, B. (2009) Facile Approach in Fabricating Superhydrophobic and Superoleophilic Surface for Water and Oil Mixture Separation. ACS Applied Materials & Interfaces, 1, 2613-2617.
https://doi.org/10.1021/am900520z
[30]  Wang, B., Li, J., Wang, G.Y., Liang, W.X., Zhang, Y.B., Shi, L., Guo, Z. and Liu, W.M. (2013) Methodology for Robust Superhydrophobic Fabrics and Sponges from In Situ Growth of Transition Metal/Metal Oxide Nanocrystals with Thiol Modification and Their Applications in Oil/Water Separation. ACS Applied Materials & Interfaces, 5, 1827-1839.
https://doi.org/10.1021/am303176a
[31]  Liang, W.X. and Guo, Z.G. (2013) Stable Superhydrophobic and Superoleophilic Soft Porous Materials for Oil/Water Separation. RSC Advances, 3, 16469-16474.
[32]  Zhang, J. and Seeger, S. (2019) Polyester Materials with Superwetting Silicone Nanofilaments for Oil/Water Separation and Selective Oil Absorption. Advanced Functional Materials, 21, 4699-4704.
[33]  Zhou, X.Y., Zhang, Z.Z., Xu, X.H., Guo, F., Zhu, X.T., Men, X.H. and Ge, B. (2013) Robust and Durable Superhydrophobic Cotton Fabrics for Oil/Water Separation. ACS Applied Materials & Interfaces, 5, 7208-7214.
https://doi.org/10.1021/am4015346
[34]  Wang, S.H., Li, M. and Lu, Q.H. (2010) Filter Paper with Selective Absorption and Separation of Liquids that Differ in Surface Tension. ACS Applied Materials & Interfaces, 2, 677-683.
https://doi.org/10.1021/am900704u
[35]  Liu, X., Ge, L., Li, W., Wang, X. and Li, F. (2015) Layered Double Hydroxide Functionalized Textile for Effective Oil/Water Separation and Selective Oil Adsorption. ACS Applied Materials & Interfaces, 7, 791-800.
[36]  Zhang, M., Wang, C., Wang, S., Shi, Y. and Li, J. (2013) Fabrication of Superhydrophobic Cotton Textiles for Water-Oil Separation Based on Drop-Coating Route. Carbohydrate Polymers, 97, 59-64.
https://doi.org/10.1016/j.carbpol.2012.08.118
[37]  Arbatan, T., Zhang, L., Fang, X.-Y. and Shen, W. (2012) Cellulose Nanofibers as Binder for Fabrication of Superhydrophobic Paper. Chemical Engineering Journal, 210, 74-79.
https://doi.org/10.1016/j.cej.2012.08.074
[38]  Sawada, H., Suto, Y., Saito, T., Oikawa, Y., Yamashita, K., Yamada, S., Sugiya, M. and Suzuki, J. (2017) Preparation of RF-(VM-SiO2)n-RF/AM-Cellu Nanocomposites, and Use Thereof for the Modification of Glass and Filter Paper Surfaces: Creation of a Glass Thermoresponsive Switching Behavior and an Efficient Separation Paper Membrane. Polymers, 9, 92.
https://doi.org/10.3390/polym9030092
[39]  Katayama, S., Fujii, S., Saito, T., Yamazaki, S. and Sawada, H. (2017) Preparation of Fluoroalkyl End-Capped Vinyltrimethoxysilane Oligomeric Silica Nanocomposites Containing Gluconamide Units Possessing Highly Oleophobic/Superhydrophobic, Highly Oleophobic/Superhydrophilic, and Superoleophilic/Superhydrophobic Characteristics on the Modified Surfaces. Polymers, 9, 292.
[40]  Crini, G. (2003) Studies on Adsorption of Dyes on Beta-Cyclodextrin Polymer. Bioresource Technology, 90, 193-198.
https://doi.org/10.1016/S0960-8524(03)00111-1
[41]  Weickenmeier, M., Wenz, G. and Huff, J. (1997) Association Thickener by Host Guest Interaction of a β-Cyclodextrin Polymer and a Polymer with Hydrophobic Side-Groups. Macromolecular Rapid Communications, 18, 1117-1123.
https://doi.org/10.1002/marc.1997.030181216
[42]  Sreenivasan, K. (1998) Solvent Effect on the Interaction of Steroids with a Novel Methyl β-Cyclodextrin Polymer. Journal of Applied Polymer Science, 68, 1857-1861.
https://doi.org/10.1002/(SICI)1097-4628(19980613)68:11<1857::AID-APP17>3.0.CO;2-R
[43]  Binello, A., Robaldo, B., Barge, A., Cavalli, R. and Cravotto, G. (2008) Synthesis of Cyclodextrin-Based Polymers and Their Use as Debittering Agents. Journal of Applied Polymer Science, 107, 2549-2557.
https://doi.org/10.1002/app.27249
[44]  Kiji, J., Kunishi, H., Okano, T., Terashima, T. and Motomura, K. (1992) Adsorption of Organic Species by a Cyclodextrin Epichlorohydrin Network Polymer. Angewandte Makromolekulare Chemie, 199, 207-210.
https://doi.org/10.1002/apmc.1992.051990116
[45]  Yamasaki, H., Makihara, Y. and Fukunaga, K. (2006) Efficient Phenol Removal of Wastewater from Phenolic Resin Plants Using Crosslinked Cyclodextrin Particles. Journal of Chemical Technology & Biotechnology, 81, 1271-1276.
https://doi.org/10.1002/jctb.1545
[46]  Lee, K.-P., Choi, S.-H., Ryu, E.-N., Ryoo, J.J., Park, J.H., Kim, Y. and Hyun, M.H. (2002) Preparation and Characterization of Cyclodextrin Polymer and Its High-Performance Liquid-Chromatography Stationary Phase. Analytical Sciences, 18, 31-34.
[47]  Kota, A.K., Kwon, G., Choi, W., Mabry, J.M. and Tuteja, A. (2012) Hygro-Respon- sive Membranes for Effective Oil-Water Separation. Nature Communications, 3, 1025-1032.
https://doi.org/10.1038/ncomms2027
[48]  Parak, S., Lee, E.S. and Sulaiman, W.R.W. (2015) Adsorption Behaviors of Surfactants for Chemical Flooding in Enhanced Oil Recovery. Journal of Industrial and Engineering Chemistry, 21, 1239-1245.
https://doi.org/10.1016/j.jiec.2014.05.040

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133