The zinc-containing enzyme HDAC-like amidohydrolase
(FB188 HDAH), identified in the Bordetella
alcaligenesbacteria, is similar to enzymes that participate in epigenetic mechanisms
such as histone modifications. The X-ray crystal structure of FB188 HDAH complexed
with the antagonist SAHA (suberoylanilide hydroxamic acid) has been solved (PDB
ID: 1ZZ1). Notably, the complex crystallizes as a tetramer in the asymmetric
unit cell of the crystal. The crystal yielded a suitable structure to analyze
the dynamics of the inhibitory mechanism of SAHA on this histone deacetylase.
Applying computational chemistry techniques and quantum mechanics theory,
several physicochemical properties were calculated to compare the active site
of the enzyme of the four monomers. Significant differences were observed in
the areas and volumes of the binding pocket, as well as hydrophobic
interactions, dipole moments, atomic charges and electrostatic potential, among
other properties. Remarkably, a free-energy curve resulting from the evaluation
of the energies of SAHA and the interacting amino acids of the four crystal
monomers unveiled the biophysical mechanism of the FB188 HDAH inhibition
exerted by SAHA to a greater extent. The biophysical mechanism of SAHA
inhibition on FB188 deacetylase was clearly observed as a dynamic process. It
is possible to define the physicochemical dynamics of the molecular complex by
the application of computational chemistry techniques and quantum mechanics
theory by studying the crystal structures of the interacting molecules.
References
[1]
Gregoretti, I.V., Lee, Y.-M. and Goodson, H.V. (2004) Molecular Evolution of the Histone Deacetylase Family: Functional Implications of Phylogenetic Analysis. Journal of Molecular Biology, 338, 17-31. https://doi.org/10.1016/j.jmb.2004.02.006
[2]
Marks, P.A., Miller, T. and Richon, V.M. (2003) Histone Deacetylases. Current Opinion in Pharmacology, 3, 344-351. https://doi.org/10.1016/S1471-4892(03)00084-5
[3]
Kurdistani, S.K. and Grunstein, M. (2003) Histone Acetylation and Deacetylation in Yeast. Nature Reviews Molecular Cell Biology, 4, 276-284. https://doi.org/10.1038/nrm1075
[4]
Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X.F. and Yao, T.P. (2002) HDAC6 Is a Microtubule-Associated Deacetylase. Nature, 417, 455-458. https://doi.org/10.1038/417455a
[5]
Jones, P. and Baylin, S.B. (2002) The Fundamental Role of Epigenetic Events in Cancer. Nature Reviews Genetics, 3, 415-428. https://doi.org/10.1038/nrg816
[6]
Govindarajan, N., Agis-Balboa, R.C., Walter, J., Sananbenesi, F. and Fischer, A. (2011) Sodium Butyrate Improves Memory Function in an Alzheimer’s Disease Mouse Model When Administered at an Advanced Stage of Disease Progression. Journal of Alzheimer’s Disease, 26, 187-197. https://doi.org/10.3233/JAD-2011-110080
[7]
Sharma, R.P., Grayson, D.R. and Gavin, D.P. (2008) Histone Deacetylase 1 Expression Is Increased in the Prefrontal Cortex of Schizophrenia Subjects: Analysis of the National Brain Databank Microarray Collection. Schizophrenia Research, 98, 111-117. https://doi.org/10.1016/j.schres.2007.09.020
[8]
Pons, D., de Vries, F.R., van den Elsen, P.J., Heijmans, B.T., Quax, P.H.A. and Jukema, J.W. (2009) Epigenetic Histone Acetylation Modifiers in Vascular Remodelling: New Targets for Therapy in Cardiovascular Disease. European Heart Journal, 30, 266-277. https://doi.org/10.1093/eurheartj/ehn603
[9]
Finnin, M.S., Donigian, J.R., Cohen, A., Richon, V.M., Rifkind, R.A., Marks, P.A., Breslow, R. and Pavletich, N.P. (1999) Structures of a Histone Deacetylase Homologue Bound to the TSA and SAHA Inhibitors. Nature, 401, 188-193. https://doi.org/10.1038/43710
[10]
Schuetz, A., Min, J., Allali-Hassani, A., Schapira, M., Shuen, M., Loppnau, P., Mazitschek, P.R., Kwiatkowski, N.P., Lewis, T.A., Maglathin, R.L., McLean, T.H., Bochkarev, A., Plotnikov, A.N., Vedadi, M. and Arrowsmith, C.H. (2008) Human HDAC7 Harbors a Class IIa Histone Deacetylase-Specific Zinc Binding Motif and Cryptic Deacetylase Activity. Journal of Biological Chemistry, 283, 11355-11363. https://doi.org/10.1074/jbc.M707362200
[11]
Somoza, J.R., Skene, R.J., Katz, B.A., Mol, C., Ho, J.D., Jennings, A.J., Luong, C., Arvai, A., Buggy, J.J., Chi, E., Tang, J., Sang, B.C., Verner, E., Wynands, R., Leahy, E.M., Dougan, D.R., Snell, G., Navre, M., Knuth, M.W., Swanson, R.V., McRee, D.E. and Tari, L.W. (2004) Structural Snapshots of Human HDAC8 Provide Insights Into the Class I Histone Deacetylases. Structure (Cambridge), 12, 1325-1334. https://doi.org/10.1016/j.str.2004.04.012
[12]
Lauffer, B.E., Mintzer, R., Fong, R., Mukund, S., Tam, C., Zilberleyb, I., Flicke, I.B., Ritscher, A., Fedorowicz, G., Vallero, R., Ortwine, D.F., Gunzner, J., Modrusan, Z., Neumann, L., Koth, C.M., Lupardus, P.J., Kaminker, J.S., Heise, C.E. and Steiner, P. (2013) Histone Deacetylase (HDAC) Inhibitor Kinetic Rate Constants Correlate with Cellular Histone Acetylation but not Transcription and Cell Viability. Journal of Biological Chemistry, 288, 26926-26943. https://doi.org/10.1074/jbc.M113.490706
[13]
Xu, W.S., Parmigiani, R.B. and Marks, P.A. (2006) Histone Deacetylase Inhibitors: Molecular Mechanisms of Action. Oncogene, 26, 5541-5552. https://doi.org/10.1038/sj.onc.1210620
[14]
Hildmann, C., Ninkovic, M., Dietrich, R., Wegener, D., Riester, D., Zimmermann, D.T., Birch, O.M., Bernegger, C., Loidl, P. and Schwienhorst, A. (2004) A New Amidohydrolase from Bordetella or Alcaligenes Strain FB188 with Similarities to Histone Deacetylases. Journal of Bacteriology, 8, 2328-2339. https://doi.org/10.1128/JB.186.8.2328-2339.2004
[15]
Nielsen, T.K., Hildmann, C., Dickmanns, A., Schwienhorst, A. and Ficner, R. (2005) Crystal Structure of a Bacterial Class 2 Histone Deacetylase Homologue. Journal of Molecular Biology, 354, 107-120. https://doi.org/10.1016/j.jmb.2005.09.065
[16]
Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer, E.E., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M. (1997) The Protein Data Bank. Journal of Molecular Biology, 112, 535-542. https://doi.org/10.1016/S0022-2836(77)80200-3
[17]
Humphrey, W., Dalke, A. and Schulten, K. (1996) VMD-Visual Molecular Dynamics. Journal of Molecular Graphics, 14, 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
[18]
Moreland, J.L., Gramada, A., Buzko, O.V., Zhang, Q. and Bourne, P.E. (2005) The Molecular Biology Toolkit (MBT): A Modular Platform for Developing Molecular Visualization Applications. BMC Bioinformatics, 6, 21. https://doi.org/10.1186/1471-2105-6-21
[19]
Guex, N. and Peitsch, M.C. (1997) Swiss-Model and the Swiss-PdbViewer: An Environment for Comparative Protein Modeling. Electrophoresis, 18, 2714-2723. https://doi.org/10.1002/elps.1150181505
[20]
Spartan’14 (2014) Wavefunction Inc., Irvine.
[21]
Loll, P.J., Picot, D. and Garavito, R.M. (1995) Crystal Structure of a Bacterial Class 2 Histone Deacetylase Homologue. Nature Structure and Biology, 2, 637-643. https://doi.org/10.1038/nsb0895-637
[22]
Nakamichi, H. and Okada, T. (2006) Crystallographic Analysis of Primary Visual Photochemistry. Angewandte Chemie International Edition, 45, 4270-4273. https://doi.org/10.1002/anie.200600595
[23]
Wang, D.F., Helquist, P., Wiech, N.L. and Wiest, O. (2005) Toward Selective Histone Deacetylase Inhibitor Design: Homology Modeling, Docking Studies, and Molecular Dynamics Simulations of Human Class I Histone Deacetylases. Journal of Medicinal Chemistry, 48, 6936-6947. https://doi.org/10.1021/jm0505011
[24]
Chen, K., Xu, L. and Wiest, O. (2013) Computational Exploration of Zinc Binding Groups for HDAC Inhibition. Journal of Organic Chemistry, 78, 5051-5055. https://doi.org/10.1021/jo400406g
[25]
Estiu, G., Greenberg, E., Harrison, C.B., Kwiatkowski, N.P., Mazitschek, R.R., Bradner, J.E. and Wiest, O. (2008) Structural Origin of Selectivity in Class II-Selective Histone Deacetylase Inhibitors. Journal of Medicinal Chemistry, 51, 2898-2906. https://doi.org/10.1021/jm7015254
[26]
Bressi, J.C., Jennings, A.J., Skene, R., Wu, Y., Melkus, R., De Jong R., O’Connell, R.S., Grimshaw, C.E., Navre, M. and Gangloff, A.R. (2010) Exploration of the HDAC2 Foot Pocket: Synthesis and SAR of Substituted N-(2-aminophenyl) Benzamides. Bioorganic and Medicinal Chemistry Letters, 20, 3142-3145. https://doi.org/10.1016/j.bmcl.2010.03.091
[27]
Ataie, N.J., Hoang, Q.Q., Zahniser, M.P.D., Tu, Y., Milne, A., Petsko, G.A. and Ringe, D. (2008) Zinc Coordination Geometry and Ligand Binding Affinity: The structural and Kinetic Analysis of the Second-Shell Serine 228 Residue and the Methionine 180 Residue of the Aminopeptidase from Vibrio proteolyticus. Biochemistry, 47, 7673-7683. https://doi.org/10.1021/bi702188e
[28]
Wu, R., Hu, P., Wang, S., Cao, Z. and Zhang, Y. (2010) Flexibility of Catalytic Zinc Coordination in Thermolysinand HDAC8: A Born-Oppenheimer Ab Initio QM/MM Molecular Dynamics Study. Journal of Chemical Theory and Computational, 6, 337. https://doi.org/10.1021/ct9005322
[29]
Vallee, B.L. and Williams, R.J.P. (1968) Metalloenzymes: The Entatic Nature of Their Active Sites. Proceedings of the National Academy of Sciences of the USA, 59, 498-505. https://doi.org/10.1073/pnas.59.2.498
[30]
Warshel, A. (1998) Electrostatic Origin of the Catalytic Power of Preorganized Active Sites. Journal of Biological Chemistry, 273, 27035-27038. https://doi.org/10.1074/jbc.273.42.27035
[31]
Richon, V.M., Emiliani, S., Verdin, E., Webb, Y., Breslow, R., Rifkind, R.A. and Marks, P.A. (1998) A Class of Hybrid Polar Inducers of Transformed Cell Differentiation Inhibits Histone Deacetylases. Proceedings of the National Academy of Sciences of the USA, 95, 3003-3007. https://doi.org/10.1073/pnas.95.6.3003
[32]
Estiu, G., West, N., Mazitschek, R.R., Greenberg, E., Bradner, J.E. and Wiest, O. (2010) On the Inhibition of Histone Deacetylase 8. Bioorganic and Medicinal Chemistry, 18, 4103-4110. https://doi.org/10.1016/j.bmc.2010.03.080
[33]
Richon, V.M. (2006) Cancer Biology: Mechanism of Antitumour Action of Vorinostat (Suberoylanilide Hydroxamic Acid), a Novel Histone Deacetylase Inhibitor. British Journal Cancer, 95, S2. https://doi.org/10.1038/sj.bjc.6603463
[34]
Methot, J.L., Chakravarty, P.K., Chenard, M., Close, J., Cruz, J.C., Dahlberg, W.K., Fleming, J., Hamblett, C.L., Hamill, J.E., Harrington, P., Harsch, A., Heidebrecht, R., Hughes, B., Jung, J., Kenific, C.M., Kral, A.M., Meinke, P.T., Middleton, R.E., Ozerova, N., Sloman, D.L., Stanton, M.G., Szewczak, A.A., Tyagarajan, S., Witter, D.J., Secrist, J.P. and Miller, T.A. (2008) Exploration of the Internal Cavity of Histone Deacetylase (HDAC) with Selective HDAC1/HDAC2 Inhibitors (SHI-1:2). Bioorganic and Medicinal Chemistry Letters, 18, 973-978. https://doi.org/10.1016/j.bmcl.2007.12.031
[35]
Kelly, W.K., Richon, V.M., O’Connor, O., Curley, T., MacGregor-Curtelli, B., Tong, W., Klang, M., Schwartz, L., Richardson, S., Rosa, E., Drobnjak, M., Cordon-Cordo, C., Chiao, J.H., Rifkind, R., Marks, P.A. and Scher, H. (2003) Phase I Clinical Trial of Histone Deacetylase Inhibitor: Suberoylanilide Hydroxamic Acid Administered Intravenously. Clinical Cancer Research, 9, 3578-3588.
[36]
Moreth, K., Riester, D., Hildmann, C., Hempel, R., Wegener, D., Schober, A. and Schwienhorst, A. (2007) An Active Site Tyrosine Residue Is Essential for Amidohydrolase but not for Esterase Activity of a Class 2 Histone Deacetylase-Like Bacterial Enzyme. Biochemical Journal, 401, 659-665. https://doi.org/10.1042/BJ20061239