全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Fermi Bubbles as a Superbubble

DOI: 10.4236/ijaa.2018.82015, PP. 200-217

Keywords: ISM, Bubbles, ISM, Clouds, Galaxy, Disk, Galaxies, Starburst

Full-Text   Cite this paper   Add to My Lib

Abstract:

In order to model the Fermi bubbles we apply the theory of the superbubble (SB). A thermal model and a self-gravitating model are reviewed. We introduce a third model based on the momentum conservation of a thin layer which propagates in a medium with an inverse square dependence for the density. A comparison has been made between the sections of the three models and the section of an observed map of the Fermi bubbles. An analytical law for the SB expansion as a function of the time and polar angle is deduced. We derive a new analytical result for the image formation of the Fermi bubbles in an elliptical framework.

References

[1]  Heiles, C. (1979) H I Shells and Supershells. The Astrophysical Journal, 229, 533.
https://doi.org/10.1086/156986
[2]  Pikel’Ner, S.B. (1968) Interaction of Stellar Wind with Diffuse Nebulae. The Astrophysical Journal Letters, 2, 97.
[3]  Weaver, R., McCray, R., Castor, J., Shapiro, P. and Moore, R. (1977) Interstellar bubbles. II—Structure and Evolution. The Astrophysical Journal, 218, 377.
https://doi.org/10.1086/155692
[4]  Su, M., Slatyer, T.R. and Finkbeiner, D.P. (2010) Giant Gamma-Ray Bubbles from Fermi-LAT: Active Galactic Nucleus Activity or Bipolar Galactic Wind? The Astrophysical Journal, 724, 1044. (Preprint)
https://doi.org/10.1088/0004-637X/724/2/1044
[5]  Jones, D.I., Crocker, R.M., Reich, W., et al. (2012) Magnetic Substructure in the Northern Fermi Bubble Revealed by Polarized Microwave Emission. The Astrophysical Journal, 747, L12. (Preprint)
https://doi.org/10.1088/2041-8205/747/1/L12
[6]  Kataoka, J., Tahara, M., Totani, T., et al. (2013) Suzaku Observations of the Diffuse X-Ray Emission across the Fermi Bubbles’ Edges. The Astrophysical Journal, 779, 57. (Preprint)
https://doi.org/10.1088/0004-637X/779/1/57
[7]  Tahara, M., Kataoka, J., Takeuchi, Y., et al. (2015) Suzaku X-Ray Observations of the Fermi Bubbles: Northernmost Cap and Southeast Claw Discovered with MAXI-SSC. The Astrophysical Journal, 802, 91. (Preprint)
https://doi.org/10.1088/0004-637X/802/2/91
[8]  Kataoka, J., Tahara, M., Totani, T., et al. (2015) Global Structure of Isothermal Diffuse X-Ray Emission along the Fermi Bubbles. The Astrophysical Journal, 807, 77. (Preprint)
https://doi.org/10.1088/0004-637X/807/1/77
[9]  Fox, A.J., Bordoloi, R., Savage, B.D., et al. (2015) Probing the Fermi Bubbles in Ultraviolet Absorption: A Spectroscopic Signature of the Milky Way’s Biconical Nuclear Outflow. The Astrophysical Journal, 799, L7. (Preprint)
https://doi.org/10.1088/2041-8205/799/1/L7
[10]  Bordoloi, R., Fox, A.J., Lockman, F.J., et al. (2017) Mapping the Nuclear Outflow of the Milky Way: Studying the Kinematics and Spatial Extent of the Northern Fermi Bubble. The Astrophysical Journal, 834, 191. (Preprint)
https://doi.org/10.3847/1538-4357/834/2/191
[11]  Abeysekara, A.U., Albert, A., Alfaro, R., et al. (2017) Search for Very High-Energy Gamma Rays from the Northern Fermi Bubble Region with HAWC. The Astrophysical Journal, 842, 85. (Preprint)
https://doi.org/10.3847/1538-4357/aa751a
[12]  Cheng, K.S., Chernyshov, D.O., Dogiel, V.A., et al. (2011) Origin of the Fermi Bubble. The Astrophysical Journal, 731, L17. (Preprint)
https://doi.org/10.1088/2041-8205/731/1/L17
[13]  Yang, H.Y.K., Ruszkowski, M., Ricker, P.M., et al. (2012) The Fermi Bubbles: Supersonic Active Galactic Nucleus Jets with Anisotropic Cosmic-Ray Diffusion. The Astrophysical Journal, 761, 185. (Preprint)
https://doi.org/10.1088/0004-637X/761/2/185
[14]  Fujita, Y., Ohira, Y. and Yamazaki, R. (2013) The Fermi Bubbles as a Scaled-Up Version of Supernova Remnants. The Astrophysical Journal, 775, L20. (Preprint)
https://doi.org/10.1088/2041-8205/775/1/L20
[15]  Thoudam, S. (2013) Fermi Bubble γ-Rays as a Result of Diffusive Injection of Galactic Cosmic Rays. The Astrophysical Journal, 778, L20. (Preprint)
https://doi.org/10.1088/2041-8205/778/1/L20
[16]  Fujita, Y., Ohira, Y. and Yamazaki, R. (2014) A Hadronic-Leptonic Model for the Fermi Bubbles: Cosmic-Rays in the Galactic Halo and Radio Emission. The Astrophysical Journal, 789, 67.
[17]  Cheng, K.S., Chernyshov, D.O., Dogiel, V.A. and Ko, C.M. (2015) Multi-Wavelength Emission from the Fermi Bubble. II. Secondary Electrons and the Hadronic Model of the Bubble. The Astrophysical Journal, 799, 112.
[18]  Sasaki, K., Asano, K. and Terasawa, T. (2015) Time-Dependent Stochastic Acceleration Model for Fermi Bubbles. The Astrophysical Journal, 814, 93.
[19]  Keshet, U. and Gurwich, I. (2017) Fermi Bubble Edges: Spectrum and Diffusion Function. The Astrophysical Journal, 840, 7.
[20]  Crocker, R.M., Bicknell, G.V., Carretti, E., et al. (2014) Steady-State Hadronic Gamma-Ray Emission from 100-Myr-Old Fermi Bubbles. The Astrophysical Journal Letters, 791, L20.
[21]  Lockman, F.J. (1984) The H I Halo in the Inner Galaxy. The Astrophysical Journal, 283, 90-97.
[22]  Dickey, J.M. and Lockman, F.J. (1990) H I in the Galaxy. Annual Review of Astronomy and Astrophysics, 28, 215-259.
[23]  Bisnovatyi-Kogan, G.S. and Silich, S.A. (1995) Shock-Wave Propagation in the Nonuniform Interstellar Medium. Reviews of Modern Physics, 67, 661.
https://doi.org/10.1103/RevModPhys.67.661
[24]  Zhu, H., Tian, W., Li, A. and Zhang, M. (2017) The Gas-to-Extinction Ratio and the Gas Distribution in the Galaxy. Monthly Notices of the Royal Astronomical Society, 471, 3494-3528.
[25]  Spitzer, L. (1942) The Dynamics of the Interstellar Medium. III. Galactic Distribution. The Astrophysical Journal, 95, 329.
https://doi.org/10.1086/144407
[26]  Rohlfs, K. (1977) Lectures on Density Wave Theory. In: Lecture Notes in Physics, Vol. 69, Springer Verlag, Berlin.
[27]  Bertin, G. (2000) Dynamics of Galaxies. Cambridge University Press, Cambridge.
[28]  Padmanabhan, P. (2002) Theoretical Astrophysics. Vol. III: Galaxies and Cosmology. Cambridge University Press, Cambridge, UK.
[29]  McCray, R.A. (1987) Coronal Interstellar Gas and Supernova Remnants. In: Dalgarno, A. and Layzer, D., Eds., Spectroscopy of Astrophysical Plasmas, Cambridge University Press, Cambridge, 255-278.
https://doi.org/10.1017/CBO9780511564659.011
[30]  Dyson, J.E. and Williams, D.A. (1997) The Physics of the Interstellar Medium. Instituteof Physics Publishing, Bristol.
https://doi.org/10.1887/075030460X
[31]  McCray, R. and Kafatos, M. (1987) Supershells and Propagating Star Formation. The Astrophysical Journal, 317, 190-196.
[32]  Zaninetti, L. (2004) On the Shape of Superbubbles Evolving in the Galactic Plane. Publications of the Astronomical Society of Japan, 56, 1067.
[33]  Zaninetti, L. (2012) Evolution of Superbubbles in a Self-Gravitating Disk. Monthly Notices of the Royal Astronomical Society, 425, 2343-2351.
[34]  Padé, H. (1892) Sur la représentation approchée d’une fonction par des fractions rationnelles. Annales Scientifiques de l’école Normale Supérieure, 9, 193.
[35]  Olver, F.W., Lozier, D.W., Boisvert, R.F. and Clark, C.W. (2010) NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge.
[36]  Baker, G. (1975) Essentials of Padé Approximants. Academic Press, New York.
[37]  Baker, G.A. and Graves-Morrism, P.R. (1996) Padé Approximants. Vol. 59, Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511530074
[38]  Miller, M.J. and Bregman, J.N. (2016) The Interaction of the Fermi Bubbles with the Milky Way’s Hot Gas Halo. The Astrophysical Journal, 829, 9.
[39]  Ackermann, M., Albert, A., Atwood, W.B., et al. (2014) The Spectrum and Morphology of the Fermi Bubbles. The Astrophysical Journal, 793, 64.
[40]  Sofue, Y. (2017) Giant HI Hole inside the 3 Kpc Ring and the North Polar Spur-The Galactic Crater. Publications of the Astronomical Society of Japan, 69, L8.
[41]  Rybicki, G. and Lightman, A. (1991) Radiative Processes in Astrophysics. Wiley-Interscience, New York.
[42]  Schlickeiser, R. (2002) Cosmic Ray Astrophysics. Springer, Berlin.
https://doi.org/10.1007/978-3-662-04814-6
[43]  Yamazaki, R., Ohira, Y., Sawada, M. and Bamba, A. (2014) Synchrotron X-Ray Diagnostics of Cutoff Shape of Nonthermal Electron Spectrum at Young Supernova Remnants. Research in Astronomy and Astrophysics, 14, 165-178.
https://doi.org/10.1088/1674-4527/14/2/005
[44]  Tran, A., Williams, B.J., Petre, R., Ressler, S.M. and Reynolds, S.P. (2015) Energy Dependence of Synchrotron X-Ray Rims in Tycho’s Supernova Remnant. The Astrophysical Journal, 812, 101.
[45]  Katsuda, S., Acero, F., Tominaga, N., Fukui, Y., Hiraga, J.S., Koyama, K., Lee, S.H., Mori, K., Nagataki, S., Ohira, Y., Petre, R., Sano, H., Takeuchi, Y., Tamagawa, T., Tsuji, N., Tsunemi, H. and Uchiyama, Y. (2015) Evidence for Thermal X-Ray Line Emission from the Synchrotron-Dominated Supernova Remnant RX J1713.7-3946. The Astrophysical Journal, 814, 29.
[46]  Lang, K.R. (1999) Astrophysical Formulae. 3rd Edition, Springer, New York.
[47]  Zwillinger, D. (2018) CRC Standard Mathematical Tables and Formulas, 33rd Edition. In: Advances in Applied Mathematics, CRC Press, New York.
[48]  De Young, D.S. (2002) The Physics of Extragalactic Radio Sources. University of Chicago Press, Chicago.
[49]  Zaninetti, L. (2013) Three Dimensional Evolution of SN 1987A in a Self-Gravitating Disk. International Journal of Astronomy and Astrophysics, 3, 93-98.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133