全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Quantum-Classical Algorithm for an Instantaneous Spectral Analysis of Signals: A Complement to Fourier Theory

DOI: 10.4236/jqis.2018.82005, PP. 52-77

Keywords: Fourier Theory, Heisenberg’s Uncertainty Principle, Quantum Fourier Transform, Quantum Information Processing, Quantum Signal Processing, Schr?dinger’s Equation, Spectral Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

A quantum time-dependent spectrum analysis, or simply, quantum spectral analysis (QSA) is presented in this work, and it’s based on Schrödinger’s equation. In the classical world, it is named frequency in time (FIT), which is used here as a complement of the traditional frequency-dependent spectral analysis based on Fourier theory. Besides, FIT is a metric which assesses the impact of the flanks of a signal on its frequency spectrum, not taken into account by Fourier theory and lets alone in real time. Even more, and unlike all derived tools from Fourier Theory (i.e., continuous, discrete, fast, short-time, fractional and quantum Fourier Transform, as well as, Gabor) FIT has the following advantages, among others: 1) compact

References

[1]  Nielsen, M.A. and Chuang, I.L. (2004) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge.
[2]  Kaye, P., Laflamme, R. and Mosca, M. (2004) An Introduction to Quantum Computting. Oxford University Press, Oxford.
[3]  Stolze, J. and Suter, D. (2007) Quantum Computing: A Short Course from Theory to Experiment. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
[4]  Busemeyer, J.R., Wang, Z. and Townsend, J.T. (2006) Quantum Dynamics of Human Decision-Making. Journal of Mathematical Psychology, 50, 220-241.
https://doi.org/10.1016/j.jmp.2006.01.003
[5]  Eldar, Y.C. (2001) Quantum Signal Processing. PhD Thesis, MIT, Boston.
[6]  Eldar, Y.C. and Oppenheim, A.V. (2002) Quantum Signal Processing. IEEE Signal Processing Magazine, 19, 12-32.
[7]  Weinstein, Y.S., Lloyd, S. and Cory, D.G. (2001) Implementation of the Quantum Fourier Transform. Physical Review Letters, 86, 1889-1891.
[8]  Tolimieri, R., An, M. and Lu, C. (1997) Mathematics of Multidimensional Fourier Transform Algorithms. Springer, New York.
[9]  Tolimieri, R., An, M. and Lu, C. (1997) Algorithms for Discrete Fourier Transform and Convolution. Springer, New York.
[10]  Oppenheim, A.V., Willsky, A.S. and Nawab, S.H. (1997) Signals and Systems. 2nd Edition, Prentice Hall, Upper Saddle River.
[11]  Oppenheim, A.V. and Schafer, R.W. (1975) Digital Signal Processing. Prentice Hall, Englewood Cliffs.
[12]  Briggs, W.L. and Van Emden, H. (1995) The DFT: An Owner’s Manual for the Discrete Fourier Transform. SIAM, Philadelphia.
[13]  Hsu, H.P. (1970) Fourier Analysis. Simon & Schuster, New York.
[14]  Jain, A.K. (1989) Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs.
[15]  Gonzalez, R.C. and Woods, R.E. (2002) Digital Image Processing. Prentice Hall, Englewood Cliffs.
[16]  Gonzalez, R.C., Woods, R.E. and Eddins, S.L. (2004) Digital Image Processing Using Matlab. Pearson Prentice Hall, Upper Saddle River.
[17]  Schalkoff, R.J. (1989) Digital Image Processing and Computer Vision. Wiley, New York.
[18]  Van Loan, C. (1992) Computational Frameworks for the Fast Fourier Transform. SIAM, New York.
[19]  Heideman, M.T., Johnson, D.H. and Burrus, C.S. (1984) Gauss and the History of the Fast Fourier Transform. IEEE ASSP Magazine, 1, 14-21.
https://doi.org/10.1109/MASSP.1984.1162257
[20]  Strang, G. (1994) Wavelets. American Scientist, 82, 256-266.
[21]  Dongarra, J. and Sullivan, F. (2000) Guest Editors Introduction to the Top 10 Algorithms. Computing in Science Engineering, 2, 22-23.
[22]  Ding, J.J. (2007) Time-Frequency Analysis and Wavelet Transform Class Note. Department of Electrical Engineering, National Taiwan University, Taipei.
[23]  Meyer, Y. (1992) Wavelets and Operators. Cambridge University Press, Cambridge.
[24]  Chui, C.K. (1992) An Introduction to Wavelets. Academic Press, San Diego.
[25]  Jaeger, G. (2009) Entanglement, Information, and the Interpretation of Quantum Mechanics. Springer, Berlin.
[26]  Schrödinger, E. (1935) Die gegenwaertige Situation in der Quantenmechanik. Die Naturwissenschaften, 23, 807-812.
[27]  Schrödinger, E. (1935) Discussion of Probability Relations between Separated Systems. Proceedings of the Cambridge Philosophical Society, 31, 555.
[28]  Audretsch, J. (2007) Entangled Systems: New Directions in Quantum Physics. Wiley-VCH Verlag GmbH & Co., Berlin.
[29]  Mastriani, M. (2018) Quantum Spectral Analysis: Frequency in Time.
[30]  Mastriani, M. (2018) Quantum Spectral Analysis: Frequency in Time with Applications to Signal and Image Processing.
[31]  Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777-780.
[32]  Einstein, A., Lorentz, H.A., Minkowski, H. and Weyl, H. (1952) The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity. Courier Dover Publications, New York.
[33]  Herbert, N. (1982) FLASH—A Superluminal Communicator Based upon a New Kind of Quantum Measurement. Foundations of Physics, 12, 1171-1179.
https://doi.org/10.1007/BF00729622
[34]  Eberhard, P.H. and Ross, R.R. (1989) Quantum Field Theory Cannot Provide Faster-than-Light Communication. Foundations of Physics Letters, 2, 127-149.
https://doi.org/10.1007/BF00696109
[35]  Bell, J. (1964) On the Einstein Podolsky Rosen Paradox. Physics, 1, 195-200.
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
[36]  Vaidman, L. (2014) Quantum Theory and Determinism. Quantum Studies: Mathematics and Foundations, 1, 5-38.
https://doi.org/10.1007/s40509-014-0008-4
[37]  Dieks, D. (1982) Communication by EPR Devices. Physics Letters A, 92, 271-272.
https://doi.org/10.1016/0375-9601(82)90084-6
[38]  Ghirardi, G.C., Grassi, R., Rimini, A. and Weber, T. (1988) Experiments of the EPR Type Involving CP-Violation Do Not Allow Faster-than-Light Communication between Distant Observers. Europhysics Letters, 6, 95-100.
[39]  Aspect, A., Grangier, P. and Roger, G. (1982) Experimental Realization of Eistein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Physical Review Letters, 49, 91-94.
https://doi.org/10.1103/PhysRevLett.49.91
[40]  Clauser, J.F., Horne, M.A., Shimony, A. and Holt, R.A. (1969) Proposed Experiment to Test Local Hidden-Variable Theories. Physical Review Letters, 23, 880-884.
https://doi.org/10.1103/PhysRevLett.23.880
[41]  Horodecki, R., Horodecki, P., Horodecki, M. and Horodecki, K. (2009) Quantum Entanglement. Reviews of Modern Physics, 81, 865-942.
[42]  NIST (2014) Quantum Computing and Communication. Create Space Independent Publishing Platform, New York.
[43]  Pathak, A. (2013) Elements of Quantum Computation and Quantum Communication. CRC Press, New York.
[44]  Cariolaro, G. (2015) Quantum Communications. Springer International Publishing, New York.
[45]  Mishra, V.K. (2016) An Introduction to Quantum Communication. Momentum Press, New York.
[46]  Imre, S. and Gyongyosi, L. (2012) Advanced Quantum Communications: An Engineering Approach. Wiley-IEEE Press, New York.
[47]  Schlosshauer, M. (2005) Decoherence, the Measurement Problem, and Interpretations of Quantum Mechanics. Reviews of Modern Physics, 76, 1267-1305.
https://doi.org/10.1103/RevModPhys.76.1267
[48]  Busch, P., Lahti, P., Pellonpaa, J.P. and Ylinen, K. (2016) Quantum Measurement. Springer, New York.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133