A quantum time-dependent
spectrum analysis, or simply, quantum
spectral analysis (QSA) is presented in this work, and it’s based on Schrödinger’s
equation. In the classicalworld, it is named frequency in time (FIT), which is used here
as a complement of the traditional frequency-dependent spectral analysis based on
Fourier theory. Besides, FIT is a metric which assessesthe impact of the flanksof a signalonits frequency spectrum, not takeninto account byFourier theory and lets alonein real time. Even more, and unlike all derived tools from Fourier Theory
(i.e., continuous, discrete, fast, short-time,
fractional and quantum Fourier Transform, as well as, Gabor) FIT has the following
advantages, among others: 1) compact
References
[1]
Nielsen, M.A. and Chuang, I.L. (2004) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge.
[2]
Kaye, P., Laflamme, R. and Mosca, M. (2004) An Introduction to Quantum Computting. Oxford University Press, Oxford.
[3]
Stolze, J. and Suter, D. (2007) Quantum Computing: A Short Course from Theory to Experiment. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
[4]
Busemeyer, J.R., Wang, Z. and Townsend, J.T. (2006) Quantum Dynamics of Human Decision-Making. Journal of Mathematical Psychology, 50, 220-241. https://doi.org/10.1016/j.jmp.2006.01.003
[5]
Eldar, Y.C. (2001) Quantum Signal Processing. PhD Thesis, MIT, Boston.
[6]
Eldar, Y.C. and Oppenheim, A.V. (2002) Quantum Signal Processing. IEEE Signal Processing Magazine, 19, 12-32.
[7]
Weinstein, Y.S., Lloyd, S. and Cory, D.G. (2001) Implementation of the Quantum Fourier Transform. Physical Review Letters, 86, 1889-1891.
[8]
Tolimieri, R., An, M. and Lu, C. (1997) Mathematics of Multidimensional Fourier Transform Algorithms. Springer, New York.
[9]
Tolimieri, R., An, M. and Lu, C. (1997) Algorithms for Discrete Fourier Transform and Convolution. Springer, New York.
[10]
Oppenheim, A.V., Willsky, A.S. and Nawab, S.H. (1997) Signals and Systems. 2nd Edition, Prentice Hall, Upper Saddle River.
[11]
Oppenheim, A.V. and Schafer, R.W. (1975) Digital Signal Processing. Prentice Hall, Englewood Cliffs.
[12]
Briggs, W.L. and Van Emden, H. (1995) The DFT: An Owner’s Manual for the Discrete Fourier Transform. SIAM, Philadelphia.
[13]
Hsu, H.P. (1970) Fourier Analysis. Simon & Schuster, New York.
[14]
Jain, A.K. (1989) Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs.
[15]
Gonzalez, R.C. and Woods, R.E. (2002) Digital Image Processing. Prentice Hall, Englewood Cliffs.
[16]
Gonzalez, R.C., Woods, R.E. and Eddins, S.L. (2004) Digital Image Processing Using Matlab. Pearson Prentice Hall, Upper Saddle River.
[17]
Schalkoff, R.J. (1989) Digital Image Processing and Computer Vision. Wiley, New York.
[18]
Van Loan, C. (1992) Computational Frameworks for the Fast Fourier Transform. SIAM, New York.
[19]
Heideman, M.T., Johnson, D.H. and Burrus, C.S. (1984) Gauss and the History of the Fast Fourier Transform. IEEE ASSP Magazine, 1, 14-21. https://doi.org/10.1109/MASSP.1984.1162257
[20]
Strang, G. (1994) Wavelets. American Scientist, 82, 256-266.
[21]
Dongarra, J. and Sullivan, F. (2000) Guest Editors Introduction to the Top 10 Algorithms. Computing in Science Engineering, 2, 22-23.
[22]
Ding, J.J. (2007) Time-Frequency Analysis and Wavelet Transform Class Note. Department of Electrical Engineering, National Taiwan University, Taipei.
[23]
Meyer, Y. (1992) Wavelets and Operators. Cambridge University Press, Cambridge.
[24]
Chui, C.K. (1992) An Introduction to Wavelets. Academic Press, San Diego.
[25]
Jaeger, G. (2009) Entanglement, Information, and the Interpretation of Quantum Mechanics. Springer, Berlin.
[26]
Schrödinger, E. (1935) Die gegenwaertige Situation in der Quantenmechanik. Die Naturwissenschaften, 23, 807-812.
[27]
Schrödinger, E. (1935) Discussion of Probability Relations between Separated Systems. Proceedings of the Cambridge Philosophical Society, 31, 555.
[28]
Audretsch, J. (2007) Entangled Systems: New Directions in Quantum Physics. Wiley-VCH Verlag GmbH & Co., Berlin.
[29]
Mastriani, M. (2018) Quantum Spectral Analysis: Frequency in Time.
[30]
Mastriani, M. (2018) Quantum Spectral Analysis: Frequency in Time with Applications to Signal and Image Processing.
[31]
Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777-780.
[32]
Einstein, A., Lorentz, H.A., Minkowski, H. and Weyl, H. (1952) The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity. Courier Dover Publications, New York.
[33]
Herbert, N. (1982) FLASH—A Superluminal Communicator Based upon a New Kind of Quantum Measurement. Foundations of Physics, 12, 1171-1179. https://doi.org/10.1007/BF00729622
[34]
Eberhard, P.H. and Ross, R.R. (1989) Quantum Field Theory Cannot Provide Faster-than-Light Communication. Foundations of Physics Letters, 2, 127-149. https://doi.org/10.1007/BF00696109
[35]
Bell, J. (1964) On the Einstein Podolsky Rosen Paradox. Physics, 1, 195-200. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
[36]
Vaidman, L. (2014) Quantum Theory and Determinism. Quantum Studies: Mathematics and Foundations, 1, 5-38. https://doi.org/10.1007/s40509-014-0008-4
[37]
Dieks, D. (1982) Communication by EPR Devices. Physics Letters A, 92, 271-272. https://doi.org/10.1016/0375-9601(82)90084-6
[38]
Ghirardi, G.C., Grassi, R., Rimini, A. and Weber, T. (1988) Experiments of the EPR Type Involving CP-Violation Do Not Allow Faster-than-Light Communication between Distant Observers. Europhysics Letters, 6, 95-100.
[39]
Aspect, A., Grangier, P. and Roger, G. (1982) Experimental Realization of Eistein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Physical Review Letters, 49, 91-94. https://doi.org/10.1103/PhysRevLett.49.91
[40]
Clauser, J.F., Horne, M.A., Shimony, A. and Holt, R.A. (1969) Proposed Experiment to Test Local Hidden-Variable Theories. Physical Review Letters, 23, 880-884. https://doi.org/10.1103/PhysRevLett.23.880
[41]
Horodecki, R., Horodecki, P., Horodecki, M. and Horodecki, K. (2009) Quantum Entanglement. Reviews of Modern Physics, 81, 865-942.
[42]
NIST (2014) Quantum Computing and Communication. Create Space Independent Publishing Platform, New York.
[43]
Pathak, A. (2013) Elements of Quantum Computation and Quantum Communication. CRC Press, New York.
[44]
Cariolaro, G. (2015) Quantum Communications. Springer International Publishing, New York.
[45]
Mishra, V.K. (2016) An Introduction to Quantum Communication. Momentum Press, New York.
[46]
Imre, S. and Gyongyosi, L. (2012) Advanced Quantum Communications: An Engineering Approach. Wiley-IEEE Press, New York.
[47]
Schlosshauer, M. (2005) Decoherence, the Measurement Problem, and Interpretations of Quantum Mechanics. Reviews of Modern Physics, 76, 1267-1305. https://doi.org/10.1103/RevModPhys.76.1267
[48]
Busch, P., Lahti, P., Pellonpaa, J.P. and Ylinen, K. (2016) Quantum Measurement. Springer, New York.