Defining data with fuzziness made the knowledge discovery process easy and secure to data in data mining. The fuzzy data bases may have linguistic variables. In this paper, fuzzy conditional inference and reasoning are studied for generalized fuzzy data mining. Generalized fuzzy data mining and reasoning is studied with two membership functions “Belief” and “Disbelief”. The fuzzy logic with two membership functions will give more evidence than single membership function. The fuzzy certainty factor is studied as difference between these functions and made it as single membership function. The fuzzy data mining methods are studied. The generalized data mining is studied with different fuzzy conditional inferences. The business intelligence is given as an example.
References
[1]
Zadeh, L.A. (1965) Fuzzy Sets. In Control, 8, 338-353.
https://doi.org/10.1016/S0019-9958(65)90241-X
[2]
Zadeh, L.A. (1975) Calculus of Fuzzy Restrictions. In: Zadeh, L.A., King-Sun, F.U., Tanaka, K. and Shimura, M., Eds., Fuzzy Sets and Their Applications to Cognitive and Decision Processes, Academic Press, New York, 1-40.
https://doi.org/10.1016/B978-0-12-775260-0.50006-2
[3]
Mamdani, E.H. and Assilian, S. (1975) An Experiment in Linguistic Synthesis with a Fuzzy Logic Control. International Journal of Man-Machine Studies, 7, 1-13.
https://doi.org/10.1016/S0020-7373(75)80002-2
[4]
Takagi, T. and Sugeno, M. (1985) Fuzzy Identification of Systems and Its Application to Modelling and Control. Systems, Man and Cybernetics, 1, 194-207.
[5]
Reddy, P.V.S. (2015) Fuzzy Data Mining and Web Intelligence. International Conference on iFuuzy 2015, Taiwan, 18-20 November 2015, 74-79.
[6]
Buchanan, B.G. and Shortliffe, E.H. (1984) Rule Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading, MA.
[7]
Reddy, P.V.S. (1993) Fuzzy Conditional Inference for Medical Diagnosis. Proceedings of Second International Conference on Fuzzy Theory and Technology, Summary FT&T 1993, 193-195.
[8]
Reddy, P.V.S. (2016) Fuzzy Map Reducing Algorithm for BIG DATA. iFuzzy 2016, IEEE Explore, 4-8.