全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Role of Methane and Methane Hydrates in the Evolution of Global Climate

DOI: 10.4236/ajcc.2018.72016, PP. 236-252

Keywords: Greenhouse Effect, Decomposition of Methane Hydrates, Permafrost, Biosphere Catastrophe, Self-Regulation in the Global Climate System

Full-Text   Cite this paper   Add to My Lib

Abstract:

For the first time, functioning of the planetary climate system is considered in terms of the self-organization laws with account of positive and negative feedbacks. It is shown that the maximum risks in the development of positive feedbacks that can lead the climate system to a planetary catastrophe, are associated with an unprecedented increase in the concentration of methane in the atmosphere. Over the last 30 years, its concentration in the atmosphere has increased by 2.5 times and continues to grow exponentially. In this review, we show that today the principal source for increase of methane concentration in the atmosphere is the self-accelerating decomposition of methane hydrates in the cryosphere of the Northern Hemisphere. In the history of the Earth, the emissions of methane into the atmosphere due to mass decomposition of methane hydrates led to climate-induced biosphere catastrophes. Paleo-reconstruction analysis of greenhouse gas concentrations in the atmosphere and its temperature over the last 420,000 years has allowed us to conclude that the self-organizing planetary climate system is currently in a state of dynamic chaos (close to the bifurcation point). This means that even a relatively weak impact on it, also of anthropogenic characters, is able to affect the planetary climate system to select its future development trajectory.

References

[1]  Boldyrev, V.M. (2016) Water Vapor and “Greenhouse Effect”. Information Agency Regnum, February 26, 2016.
https://regnum.ru/news/innovatio/2086744.html
[2]  Mikaloff Fletcher, S.E., Tans, P.P., Bruhwiler, J.B., Miller, J.B. and Heimann, M. (2004) CH4 Sources Estimated from Atmospheric Observations of CH4 and Its 13C/12С Isotopic Ratios: 1. Inverse Modeling of Source Processes. Global Biogeochemical Cycles, 18, 1-17.
[3]  Adushkin, V.V. and Kudryavtsev, V.P. (2010) Global Methane Flux into the Atmosphere and Its Seasonal Variations. Izvestiya. Physics of the Solid Earth, 46, 350-357.
https://doi.org/10.1134/S1069351310040075
[4]  Shakhova, N.E. (2010) Methane in the Seas of the Eastern Arctic. Dr. Sci. Thesis, P.P. Shirshov Institute of Oceanology, Moscow.
[5]  Temporal Evolution of Methane (CH4). (2011)
http://lgge.osug.fr/article374.html?lang=fr
[6]  Seinfeld, J.H. and Pandis, S.N. (1998) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley and Sons, New Jersey.
[7]  Bazhin, N.M. (2000) Methane in Atmosphere. Soros Educational Journal, Chemistry, 6, 52-57.
[8]  Smyshlyaev, S.P., Blakitnaya, P.A., Mareev, E.A. and Galin, V.Y. (2015) Modeling the Influence of Methane Emissions from Arctic Gas Hydrates on Regional Variations in Composition of the Lower Atmosphere. Izvestiya Atmospheric and Oceanic Physics, 51, 412-422.
https://doi.org/10.1134/S000143381504012X
[9]  Golitsyn, G.S. and Ginzburg, A.S. (2007) Estimates of the Possibility of Rapid Methane Warming 55 Ma Ago. Doklady Earth Sciences, 413A, 487-490.
https://doi.org/10.1134/S1028334X07030361
[10]  Etiope, G. (2004) New Directions: GEM—Geologic Emission of Methane, the Missing Source in the Atmospheric Methane Budget. Atmospheric Environment, 38, 3099-3100.
https://doi.org/10.1016/j.atmosenv.2004.04.002
[11]  Lowe, D.C. (2006) A Green Source of Surprise. Nature, 439, 148-149.
https://doi.org/10.1038/439148a
[12]  Adushkin, V.V., Kudryavtsev, V.P. and Turuntaev, S.B. (1998) Evaluate the Magnitude of the Abiogenic Component of the Flow of Methane into the Atmosphere. In: Dobretsov, N.L. and Kovalenko, V.I., Eds., Global Changes of Environment, SB RAS, SPC UIGGM, Novosibirsk, 191-205.
[13]  Denisov, S.N., Arzhanov, M.M., Eliseev, A.V. and Mokhov, I.I. (2011) Assessment of the Response of Subaqueous Methane Hydrate Deposits to Possible Climate Change in the Twenty-First Century. Doklady Earth Sciences, 441, 1706-1709.
https://doi.org/10.1134/S1028334X11120129
[14]  Adushkin, V.V. and Kudryavtsev, V.P. (2013) Estimating the Global Flux of Methane into the Atmosphere and Its Seasonal Variations. Izvestiya: Atmospheric and Oceanic Physics, 49, 128-136.
https://doi.org/10.1134/S0001433813020023
[15]  Volodin, E.M. (2015) Influence of Methane Sources in Northern Hemisphere High Latitudes on the Interhemispheric Asymmetry of Its Atmospheric Concentration and Climate. Izvestiya: Atmospheric and Oceanic Physics, 51, 251-258.
https://doi.org/10.1134/S0001433815030123
[16]  Arzhanov, M.M., Mokhov, I.I. and Denisov, S.N. (2016) Destabilization of Relict Methane Hydrates with Observed Changes of Regional Climate. The Arctic: Ecology and Economy, 4, 48-51.
[17]  Fyodorov-Davydov, D.G., Davydov, S.P., Davydova, A.I., Zimov, S.A., Mergelov, N.C., Ostroumov, V.E., Sorokovikov, V.A., Kholodov, A.L. and Mitroshin, I.A. (2004) Spatial and Temporal Regularities of Soil Seasonal Thawing in the North of the Kolyma Lowland. Earth Cryosphere, 8, 15-26.
[18]  Garagulya, L.S., Kudryavtsev, V.A., Kondratieva, K.A. and Maksimova, L.N. (1970) Influence of Geological and Geographical Factors on the Temperature Regime of Rocks of the Seasonal Thaw Layer in the Northern Part of the Yana-Indigirka Interfluves. Merzlotnye Issledovaniya, X, Moscow State University, Moscow, 59-79.
[19]  Kondratieva, K.A. and Trush, N.I. (1961) To the Question Concerning Determination of the Depths of Seasonal Freezing and Thawing of Soils. Merslotnye Issledovaniya, II, Moscow State University, Moscow, 59-70.
[20]  Matveyeva, N.V. (1971) Dynamics of Thawing of the Active Layer in the Tundra of the Western Taimyr. In: Tichomirov, B.A., Ed., Biogeocenoses of Taimyr Tundra and Their Productivity, Publishing House “Nauka”, Leningrad, 45-56.
[21]  Bogatyrev, L.G. (1974) Dynamics of Thawing Permafrost in the Tundra Soil Field Base “Agape Feast”. In: Kovda, V.A., Ed., Soil and Productivity of Plant Communities, Moscow State University, Moscow, 67-73.
[22]  Pavlov, A.V. (1999) The Thermal Regime of Lakes in Northern Plain Regions. Earth Cryosphere, 3, 59-70.
[23]  Anisimova, N.P. (1966) The Temperature of Bottom Sediments as an Indicator of Sublacustrine Talik Thickness In: Grave, N.A. and Nekrasov, I.A., Eds., Materials of VIII All-Union Inter-Ministerial Meeting on Geocryology, 3 (Regional Geocryology), Yakutskoe Knizhnoe Izdatelstvo, Yakutsk, 188-197.
[24]  Are, F.E. (1974) Thermal Regime of Shallow Lakes of the Taiga Zone of Eastern Siberia (on the Example of Central Yakutia). In: Are, F.E., Ed., Lakes of the Permafrost Zone of Siberia, Nauka, Novosibirsk, 98-116.
[25]  Tishin, M.I. (1978) Temperature Regime of the Water Mass of the Lake Syrdakh. In: Pavlov, A.V., Ed., Geophysical Studies in Siberia, Nauka, Novosibirsk, 58-66.
[26]  Melnikov, V.P., Nesterov, A.N., Podenco, L.S., Reshetnikov, A.M. and Shalamov, V.V. (2011) Metastable States of Gas Hydrates at Pressures below the Equilibrium Pressure of the Ice-Hydrate-Gas. Earth Cryosphere, 15, 80-83.
[27]  Istomin, V.A. and Yakushev, V.S. (1992) Gas Hydrates in Natural Conditions. Nedra, Moscow.
[28]  Zelenina, L.I. and Fedkyshova, S.I. (2012) Forecasting and the Results of Climatic Changes in the Arctic Region. Arctic and the North, 5, 1-5.
[29]  Alekseev, G.V., Ananicheva, M.D., Anisimov, O.A., Ashik, I.M., Bardin, M.Yu., Bogdanova, E.G., et al. (2014) Second Roshydromet Assessment Report on Climate Change and Its Consequences in Russian Federation. General Summary, Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet), Moscow.
[30]  Bocharov, G.V., Gusev, G.S., Esikova, L.V. and Spektor, V.B. (1982) The Map of Recent Vertical Movements of the Yakutsk ASSR Territory. Geotectonics, 3, 60-64.
[31]  Razumov, S.O., Spektor, V.B. and Grigoriev, M.N. (2014) Model of the Post-Cenozoic Evolution of the Cryolithozone of the Shelf of the Western Part of the Laptev Sea. Oceanology, 54, 679-693.
https://doi.org/10.1134/S0001437014040092
[32]  Walter, K.M., Zimov, S.A., Chanton, J.P., Verbyla, D. and Chapin III, F.S. (2006) Methane Bubbling from Siberian Thaw Lakes as a Positive Feedback to Climate Warming. Nature, 443, 71-75.
https://doi.org/10.1038/nature05040
[33]  Walter, K.M., Edwards, M.E., Grosse, G., Zimov, S.A. and Chapin III, F.S. (2007) Thermokarst Lakes as a Source of Atmospheric CH4 during the Last. Science, 318, 633-636.
https://doi.org/10.1126/science.1142924
[34]  Zimov, S.A., Schuur, E.A.G. and Chapin III, F.S. (2006) Permafrost and the Global Carbon Budget. Science, 312, 1612-1613.
https://doi.org/10.1126/science.1128908
[35]  Sergienko, V.I., Lobkovskii, L.I., Semiletov, I.P., Dudarev, O.V., Dmitrievskii, N.N., Shakhova, N.E., Romanovskii, N.N., Kosmach, D.A., Nikol'skii, D.N., Nikiforov, S.L., Salomatin, A.S., Ananev, R.A., Roslyakov, A.G., Salyuk, A.N., Karnaukh, V.V., Chernykh, D.B., Tumskoi, V.E., Yusupov, V.I., Kurilenko, A.V., Chuvilin, E.M. and Bukhanov, B.A. (2012) The Degradation of Submarine Permafrost and the Destruction of Hydrates on the Shelf of East Arctic Seas as a Potential Cause of the Methane Catastrophe: Some Results of Integrated Studies in 2011. Doklady Earth Sciences, 446, 1132-1137.
https://doi.org/10.1134/S1028334X12080144
[36]  Soloviev, V.A. (1987) Cryothermie and Natural Gas Hydrates in the Arctic Ocean. Sevmorgeo, Leningrad.
[37]  Shakhova, N.E. and Semiletov, I.P. (2014) Methane in the Seas of the Eastern Arctic: Selected Results of the Study (1994-2014).
http://www.ras.ru/FStorage/download.aspx?id=0e8cedce-f45f-4645-ab67-8ce6e88e6b66
[38]  Romanovskii, N.N., Kholodov, A.L., Gavrilov, A.V., Tumskoy, V.E., Hubberten, H.-W. and Kassens, H. (1999) Ice-Bonded Permafrost Thickness in the Eastern Part of the Laptev Sea Shelf (Results of Computer Modeling). Earth Cryosphere, 3, 22-32.
[39]  Anisimov, O.A., Borzenkova, I.I., Lavrov, S.A. and Strel’chenko, Yu.G. (2012) The Current Dynamics of the Submarine Permafrost and Methane Emissions on the Shelf of the Eastern Arctic Seas. Ice and Snow, 52, 97-105.
[40]  Malakhova, V.V. and Golubeva, E.N. (2016) Estimation of the Permafrost Stability on the East Arctic Shelf under the Extreme Climate Warming Scenario for the XXI Century. Ice and Snow, 56, 61-72.
https://doi.org/10.15356/2076-6734-2016-1-61-72
[41]  Frederick, J.M. and Buffett, B.A. (2014) Taliks in Relict Submarine Permafrost and Methane Hydrate Deposits: Pathways for Gas Escape under Present and Future Conditions. Journal of Geophysical Research: Earth Surface, 119, 106-122.
https://doi.org/10.1002/2013JF002987
[42]  Malakhova, V.V. (2016) Modeling of Submarine Taliks of the Laptev Sea Shelf. Proceedings of the 12th International Conference Interexpo Geo-Siberia, Novosibirsk, 18-22 April 2016, Vol. 1, 120-124.
[43]  Grosswald, M.G. (1999) Cataclysmic Megafloods in Eurasia and the Polar Ice Sheets. An Essay in Geomorphological Analysis of Continental Paleohydrological Systems. Scientific World, Moscow.
[44]  Grosswald, M.G. (2009) Ice Sheets in the Russian North and North-East during the Last Great Chill. Data of Glaciological Studies, 106, 11-149.
[45]  Winterfeld, M., Schirrmeister, L., Grigoriev, M.N., Kunitsky, V.V., Andreev, A., Murray, A. and Overduin, P.P. (2011) Coastal Permafrost Landscape Development since the Late Pleistocene in the Western Laptev Sea, Siberia. Boreas, 40, 697-713.
https://doi.org/10.1111/j.1502-3885.2011.00203.x
[46]  Grigoriev, M.N. (2006) Morphology and Dynamics of Transformation of Submarine Permafrost in the Coastal-Shelf Zone of the Laptev and East Siberian Seas. Nauka i Obrazovanie, No. 4, 104-109.
[47]  Malakhova, V.V. and Golubeva, E.N. (2013) On Possible Methane Emissions from the East Arctic Seas. Atmospheric and Oceanic Optics, 26, 452-458.
[48]  Anfilatova, E.A. (2008) A Review of Modern Foreign Data on the Problem of Occurrence of Gas Hydrates World Offshore. Neftegazovaya Geologiya. Teoriya I Praktika, 3, 1-15.
[49]  Shakhova, N.E., Yusupov, V.A., Salyuk, A.N., Kosmach, D.A. and Semiletov, I.P. (2009) Anthropogenic Factor and Methane Emission on the East-Siberian Shelf. Doklady Earth Sciences, 429A, 1488-1491.
https://doi.org/10.1134/S1028334X09090165
[50]  Yurganov, L.N. and Leifer, A. (2016) Abnormal Concentrations of Atmospheric Methane over the Okhotsk Sea in Winter 2015/2016. Modern Problems of Remote Sensing of the Earth from Space, 13, 231-234.
https://doi.org/10.21046/2070-7401-2016-13-3-231-234
[51]  Grigoriev, M.N. (2017) Studies of Permafrost Degradation of the Seas of East Siberia (According to the Results of Expedition 2014-2016). Problems of the Arctic and Antarctic, No. 1, 89-96.
[52]  Safronov, A.F., Shits, E.Yu., Grigor’ev, M.N. and Semenov, M.E. (2010) Formation of Gas Hydrate Deposits in the Siberian Arctic Shelf. Russian Geology and Geophysics, 51, 83-87.
https://doi.org/10.1016/j.rgg.2009.12.006
[53]  Paull, C.K., Ussler, W., Dallimore, S.R., Blasco, S.M., Lorenson, T.D., Melling, H., Medioli, B.E, Nixon, F.M. and McLaughlin, F.A. (2007) Origin of Pingo-Like Features on the Beaufort Sea Shelf and Their Possible Relationship to Decomposing Methane Gas Hydrates. Geophysical Research Letters, 34, 1-5.
https://doi.org/10.1029/2006GL027977
[54]  Judd, A.G., Hovland, M., Dimitrov, L.I., Garica, G.S. and Jukes, V. (2002) The Geological Methane Budget at Continental Margins and Its Influence on Climate Change. Geofluids, 2, 109-126.
https://doi.org/10.1046/j.1468-8123.2002.00027.x
[55]  Dyadin, Y.A. and Guschin, A.L. (1998) Gas Hydrates. Soros Educational Journal Chemistry, 3, 55-64.
[56]  Zakharenko, V.S. (2011) Potential Ecological Risk Related to Gas-Hydrates Deposits within West Arctic Continental Margin. Environment Protection in Oil and Gas Complex, 4, 21-26.
[57]  Gavrilova, M.K. (2007) Zoning of the Russian North. In: Filippov, V.V., Ed., Proceedings “Zoning of the Russian North”, Publishing House of the Permafrost Institute, SB RAS, Yakutsk, 64-98.
[58]  Duchkov, A.D, Sokolova, L.S., Ayunov, D.E. and Permyakov, M.E. (2009) Assessment of Potential of West Siberian Permafrost for the Carbon Dioxide Storage. Earth’s Cryosphere, 13, 62-68.
[59]  Kattsov, V.M. and Porfiryev, B.N. (2012) Climate Change in the Arctic: The Consequences for the Environment and the Economy. Arctic: Ecology and Economics, No. 2, 66-77.
[60]  Kiselev, A.A. and Reshetnikov, A.I. (2013) Methane in the Russian Arctic: The Results of Observations and Calculations. Problems of the Arctic and Antarctic, No. 2, 5-15.
[61]  Speсtor, V.B., Kerchengolts, B.M., Lifshitz, S.H. and Speсtor, V.V. (2007) A Carbonate-Methane System of Planetary Self-Regulation of Climate. Izvestiya RAN: Seriya Geographicheskaya, 6, 1-12.
[62]  Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Saltzman, E. and Stievenard, M. (1999) Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica. Nature, 399, 429-436.
https://doi.org/10.1038/20859
[63]  http://sweet211.ru/kolichestvo-klimaticheskih-kataklizmov-rezko-vozroslo.html
[64]  Mann, M.E., Rahmstorf, S., Kornhuber, K., Steinman, B.A., Miller, S.K. and Coumou, D. (2017) Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events. Scientific Reports, 7, Article No. 45242.
http://www.nature.com/articles/srep45242
[65]  http://tass.ru/spec/climate
[66]  Yudovich, Y.E. (2009) Geochemical Davos Fashion-2009. Bulletin of the Institute of Geology, 7, 25-33.
[67]  Adushkin, V.V., Soloviev, S.P. and Turuntaev, S.B. (2001) The Ratio of Anthropogenic and Natural Components in the Flow of Gases into the Atmosphere. In: Dobretsov, N.L. and Kovalenko, V.I., Eds., Global Changes of Environment 2001, SB RAS, GEO, Novosibirsk, 249-264.
[68]  Nauta, A.L., Heijmans, M.P.D., Blok, D., Limpens, J., Elberling, B., Gallagher, A., Li B., Petrov, R.E., Maximov, T.C., Huissteden, J. and Berendse, F. (2014) Permafrost Collapse after Shrub Removal Shifts Tundra Ecosystem to a Methane Source. Nature Climate Change.
http://www.nature.com/natureclimatechange
[69]  Knoblauch, Ch., Beer, Ch., Liebner, S., Grigoriev, M.N. and Pfeiffer, E.M. (2018) Methane Production as Key to the Greenhouse Gas Budget of Thawing Permafrost. Nature Climate Change.
http://www.nature.com/natureclimatechange

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133