Realistic FLRW cosmic coasting models which contain matter now appear to be a reasonable alternative in explaining the accumulated Supernova Cosmology Project data since 1998. In sharp contrast to the unrealistic original classic Milne universe, which was entirely devoid of matter, these modified Milne-type models containing matter, often referred to as realistic linear Rh = ct models, have rapidly become the primary competition with standard cosmology. This paper compares the expected relative luminosity distances and relative angular diameter distances for given magnitudes of redshift within these two competing models. A simple ratio formula is derived, which explains how expected luminosity distances and angular diameter distances for given magnitudes of redshift within a realistic Milne-type cosmic expansion could create the illusion (for standard model proponents) of cosmic acceleration where none exists.
References
[1]
Tutusaus, I., et al. (2017) Astronomy & Astrophysics, 602, A73. arXiv:1706.05036v1 [astro-ph.CO].
[2]
Dam, L.H., et al. (2017) Monthly Notices of the Royal Astronomical Society, 472, 835-851. https://doi.org/10.1093/mnras/stx1858
Wei, J.-J., et al. (2015) Astronomical Journal, 149, 102.
[5]
Melia, F. (2012) Astronomical Journal, 144, arXiv:1206.6289 [astro-ph.CO]. https://doi.org/10.1088/0004-6256/144/4/110
[6]
Gehlaut, S., et al. (2002) A “Freely Coasting” Universe. arXiv:astro-ph/0209209v.2.
[7]
Melia, F., et al. (2012) Monthly Notices of the Royal Astronomical Society, 419, 2579-2586. arXiv:1109.5189 [astro-ph.CO]. https://doi.org/10.1111/j.1365-2966.2011.19906.x
[8]
Melia, F., et al. (2013) Monthly Notices of the Royal Astronomical Society, 432, 2669-2675. https://doi.org/10.1093/mnras/stt596
[9]
Melia, F. (2015) Monthly Notices of the Royal Astronomical Society, 446, 1191-1194. https://doi.org/10.1093/mnras/stu2181
[10]
Melia, F., et al. (2016) Monthly Notices of the Royal Astronomical Society, 456, 3422-3431. https://doi.org/10.1093/mnras/stv2902
[11]
Tatum, E.T., Seshavatharam, U.V.S. and Lakshminarayana, S. (2015) International Journal of Astronomy and Astrophysics, 5, 116-124. https://doi.org/10.4236/ijaa.2015.52015
[12]
Tatum, E.T., Seshavatharam, U.V.S. and Lakshminarayana, S. (2015) Journal of Applied Physical Science International, 4, 18-26.
[13]
Tatum, E.T., Seshavatharam, U.V.S. and Lakshminarayana, S. (2015) Frontiers of Astronomy, Astrophysics and Cosmology, 1, 98-104.
[14]
John, M.V. (2016) Monthly Notices of the Royal Astronomical Society, 1-12.
[15]
Milne, E.A. (1935) Relativity, Gravitation and World-Structure. The Clarendon Press, Oxford.
[16]
Perlmutter, S., et al. (1999) Astrophysical Journal, 517, 565-586. https://doi.org/10.1086/307221
[17]
Schmidt, B., et al. (1998) Astrophysical Journal, 507, 46-63. https://doi.org/10.1086/306308
[18]
Riess, A.G., et al. (1998) Astronomical Journal, 116, 1009-1038. https://doi.org/10.1086/300499
[19]
Ade, P.A.R., et al. (2015) A&A, 594, A13. http://arxiv.org/abs/1502.01589
[20]
Suzuki, N., et al. (2011) The Hubble Space Telescope Cluster Supernovae Survey: V. Improving the Dark Energy Constraints Above Z > 1 and Building an Early-Type-Hosted Supernova Sample.