全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Chemical Reactivity Theory (CRT) Study of the Melanoidin M8: Local Conceptual Density Functional Theory Descriptors

DOI: 10.4236/cmb.2018.82004, PP. 80-90

Keywords: Melanoidin M8, Conceptual DFT, Chemical Reactivity, Dual Descriptor, Parr Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study evaluated a fixed long-range corrected range-separated hybrid (RSH) density functional associated with the Def2TZVP basis set alongside the Solvation Model based on Density (SMD) for the computation of the structure, molecular properties and chemical reactivity of the M8 intermediate melanoidin pigment. The preference of the active sites pertinent to radical, nucleophilic and electrophilic attacks is made through linking them with the electrophilic and nucleophilic Parr functions, Fukui function indices, and condensed Dual Descriptor. This study showed that the MN12SX density functional is the most suitable one for predicting the chemical reactivity of this system.

References

[1]  Nursten, H., Ed. (2005) The Maillard Reaction—Chemistry, Biochemistry and Implications. The Royal Society of Chemistry, Cambridge, UK.
[2]  Parr, R. and Yang, W. (1989) Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York.
[3]  Mineva, T., Sicilia, E. and Russo, N. (1998) Density-Functional Approach to Hardness Evaluation and Its Use in the Study of the Maximum Hardness Principle, Journal of the American Chemical Society, 120, 9053-9058.
[4]  Mineva, T., Russo, N. and Sicilia, E. (1998) Solvation Effects on Reaction Profiles by the Polarizable Continuum Model Coupled with the Gaussian Density Functional Method. Journal of Computational Chemistry, 19, 290-299.
https://doi.org/10.1002/(SICI)1096-987X(199802)19:3<290::AID-JCC3>3.0.CO;2-O
[5]  De Luca, G., Sicilia, E., Russo, N. and Mineva, T. (2002) On the Hardness Evaluation in Solvent for Neutral and Charged Systems. Journal of the American Chemical Society, 124, 1494-1499.
[6]  Sicilia, E., Russo, N. and Mineva, T. (2001) Correlation between Energy, Polarizability, and Hardness Profiles in the Isomerization Reaction of HNO and ClNO. The Journal of Physical Chemistry A, 105, 442-450.
https://doi.org/10.1021/jp002350d
[7]  Frau, J. and Glossman-Mitnik, D. (2018) Molecular Reactivity and Absorption Properties of Melanoidin Blue-G1 through Conceptual DFT. Molecules, 23, 559-515.
https://doi.org/10.3390/molecules23030559
[8]  Frau, J. and Glossman-Mitnik, D. (2018) Conceptual DFT Study of the Local Chemical Reactivity of the Dilysyldipyrrolones A and B Intermediate Melanoidins. Theoretical Chemistry Accounts, 137, 1210.
https://doi.org/10.1007/s00214-018-2244-x
[9]  Frau, J. and Glossman-Mitnik, D. (2018) Conceptual DFT Study of the Local Chemical Reactivity of the Colored BISARG Melanoidin and Its Protonated Derivative. Frontiers in Chemistry, 6, 1-9.
[10]  Frau, J. and Glossman-Mitnik, D. (2018) Molecular Reactivity of some Maillard Reaction Products Studied through Conceptual DFT. Contemporary Chemistry, 1, 1-14.
[11]  Karolewski, A., Stein, T., Baer, R. and Kümmel, S. (2011) Communication: Tailoring the Optical Gap in Light-Harvesting Molecules. The Journal of Chemical Physics, 134, Article ID: 151101.
[12]  Karolewski, A., Kronik, L. and Kümmel, S. (2013) Using Optimally Tuned Range Separated Hybrid Functionals in Ground-State Calculations: Consequences and Caveats. The Journal of Chemical Physics, 138, Article ID: 204115.
https://doi.org/10.1063/1.4807325
[13]  Koppen, J.V., Hapka, M., Szczeniak, M.M. and Chalasinski, G. (2012) Optical Absorption Spectra of Gold Clusters Au(n) (n = 4, 6, 8,12, 20) from Long-Range Corrected Functionals with Optimal Tuning. The Journal of Chemical Physics, 137, Article ID: 114302.
[14]  Kronik, L., Stein, T., Refaely-Abramson, S. and Baer, R. (2012) Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals. Journal of Chemical Theory and Computation, 8, 1515-1531.
[15]  Kuritz, N., Stein, T., Baer, R. and Kronik, L. (2011) Charge-Transfer-Like π → π* Excitations in Time-Dependent Density Functional Theory: A Conundrum and Its Solution. Journal of Chemical Theory and Computation, 7, 2408-2415.
https://doi.org/10.1021/ct2002804
[16]  Refaely-Abramson, S., Baer, R. and Kronik, L. (2011) Fundamental and Excitation Gaps in Molecules of Relevance for Organic Photovoltaics From an Optimally Tuned Range-Separated Hybrid Functional. Physical Review B, 84, Article ID: 075144.
[17]  Stein, T., Kronik, L. and Baer, R. (2009) Prediction of Charge-Transfer Excitations in Coumarin-Based Dyes Using a Range-Separated Functional Tuned from First Principles. The Journal of Chemical Physics, 131, Article ID: 244119.
[18]  Stein, T., Kronik, L. and Baer, R. (2009) Reliable Prediction of Charge Transfer Excitations in Molecular Complexes Using Time-Dependent Density Functional Theory. Journal of the American Chemical Society, 131, 2818-2820.
[19]  Sun, H. and Autschbach, J. (2014) Electronic Energy Gaps for π-Conjugated Oligomers and Polymers Calculated with Density Functional Theory. Journal of Chemical Theory and Computation, 10, 1035-1047.
[20]  Parr, R. and Yang, W. (1984) Density Functional Approach to the Frontier-Electron Theory of Chemical Reactivity. Journal of the American Chemical Society, 106, 4049-4050.
[21]  Geerlings, P., De Proft, F. and Langenaeker, W. (2003) Conceptual Density Functional Theory. Chemical Reviews, 103, 1793-1873.
[22]  Parr, R., Szentpaly, L. and Liu, S. (1999) Electrophilicity Index. Journal of the American Chemical Society, 121, 1922-1924.
https://doi.org/10.1021/ja983494x
[23]  Gázquez, J., Cedillo, A. and Vela, A. (2007) Electrodonating and Electroaccepting Powers. Journal of Physical Chemistry A, 111, 1966-1970.
[24]  Chattaraj, P., Chakraborty, A. and Giri, S. (2009) Net Electrophilicity. Journal of Physical Chemistry A, 113, 10068-10074.
[25]  Morell, C., Grand, A. and Toro-Labbé, A. (2005) New Dual Descriptor for Chemical Reactivity. Journal of Physical Chemistry A, 109, 205-212.
[26]  Morell, C., Grand, A. and Toro-Labbé, A. (2006) Theoretical Support for Using the Descriptor. Chemical Physics Letters, 425, 342-346.
https://doi.org/10.1016/j.cplett.2006.05.003
[27]  Cárdenas, C., Rabi, N., Ayers, P., Morell, C., Jaramillo, P. and Fuentealba, P. (2009) Chemical Reactivity Descriptors for Ambiphilic Reagents: Dual Descriptor, Local Hypersoftness, and Electrostatic Potential. Journal of Physical Chemistry A, 113, 8660-8667.
[28]  Toro-Labbé, A. (2007) Theoretical Aspects of Chemical Reactivity. Elsevier Science, Amsterdam.
[29]  Ayers, P., Morell, C., De Proft, F. and Geerlings, P. (2007) Understanding the Woodward-Hoffmann Rules by Using Changes in Electron Density. Chemistry—A European Journal, 13, 8240-8247.
[30]  Morell, C., Ayers, P., Grand, A., Gutiérrez-Oliva, S. and Toro-Labbé, A. (2008) Rationalization of the Diels-Alder Reactions through the Use of the Dual Reactivity Descriptor . Physical Chemistry Chemical Physics, 10, 7239-7246.
[31]  Morell, C., Hocquet, A., Grand, A. and Jamart-Grégoire, B. (2008) A Conceptual DFT Study of Hydrazino Peptides: Assessment of the Nucleophilicity of the Nitrogen Atoms by Means of the Dual Descriptor . Journal of Molecular Structure: THEOCHEM, 849, 46-51.
[32]  Domingo, L.R., Pérez, P. and Sáez, J. (2013) Understanding the Local Reactivity in Polar Organic Reactions through Electrophilic and Nucleophilic Parr Functions. RSC Advances, 3, 1486-1494.
[33]  Chamorro, E., Pérez, P. and Domingo, L.R. (2013) On the Nature of Parr Functions to Predict the Most Reactive Sites along Organic Polar Reactions. Chemical Physics Letters, 582, 141-143.
[34]  Domingo, L.R., Ríos-Gutiérrez, M. and Pérez, P. (2016) Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules, 21, 748.
[35]  Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J. and Fox, D.J. (2018) Gaussian 09 Revision D.01. Gaussian Inc., Wallingford.
[36]  Weigend, F. and Ahlrichs, R. (2005) Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Physical Chemistry Chemical Physics, 7, 3297-3305.
https://doi.org/10.1039/b508541a
[37]  Weigend, F. (2006) Accurate Coulomb-Fitting Basis Sets for H to R. Physical Chemistry Chemical Physics, 8, 1057-1065.
[38]  Marenich, A., Cramer, C. and Truhlar, D. (2009) Universal Solvation Model Based on Solute Electron Density and a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. Journal of Physical Chemistry B, 113, 6378-6396.
[39]  Halgren, T.A. (1996) Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. Journal of Computational Chemistry, 17, 490-519.
[40]  Halgren, T.A. (1996) Merck Molecular Force Field. II. MMFF94 van der Waals and Electrostatic Parameters for Intermolecular Interactions. Journal of Computational Chemistry, 17, 520-552.
[41]  Halgren, T.A. (1996) MMFF VI. MMFF94s Option for Energy Minimization Studies. Journal of Computational Chemistry, 20, 720-729.
[42]  Halgren, T.A. and Nachbar, R.B. (1996) Merck Molecular Force Field. IV. Conformational Energies and Geometries for MMFF94. Journal of Computational Chemistry, 17, 587-615.
[43]  Halgren, T.A. (1996) Merck Molecular Force field. V. Extension of MMFF94 Using Experimental Data, Additional Computational Data, and Empirical Rules. Journal of Computational Chemistry, 17, 616-641.
[44]  Zhurko, G. and Zhurko, D. (2012) Chemcraft Program Revision 1.6.
http://www.chemcraft.com/

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133