全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Development of Fine Poly(D,L-Lactic-Co-Glycolic Acid) Particles for Hydrophilic Drug Using a Solid-in-Oil-in-Water Emulsion

DOI: 10.4236/jeas.2018.82004, PP. 58-66

Keywords: PLGA, Hydrophilic drugs, S/O/W Emulsions, Solvent Evaporation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Poly(D,L-Lactic-Co-Glycolic Acid) (PLGA) copolymers have been extensively used as controlled-release carriers for many hydrophilic drugs because they are non-toxic, biodegradable, bioavailable, and biocompatible. In general, PLGA particles have been produced by a solvent evaporation technique utilizing water-in-oil-in-water (W/O/W) emulsions. However, W/O/W emulsions are unstable, causing the outer and inner aqueous phases to easily fuse during particle preparation. Consequently, a sufficient amount of drug was not encapsulated inside the particles. In this study, we examined a new particle preparation method utilizing a solid-in-oil-in-water (S/O/W) emulsion technique. The advantages of S/O/W emulsions, wherein a surfactant-drug complex disperses into the oil phase, were as follows: 1) leakage of hydrophilic drugs from the emulsions was inhibited, and 2) facile control over the emulsion particle size. Thus, the PLGA particles prepared by this method showed high encapsulation efficiency of drugs and formation of fine particles of submicron size by membrane emulsification were achieved.

References

[1]  Danhier, F., Ansorena, E., Silva, J.N., Coco, R., Breton, A.L. and Préat, V. (2012) PLGA-Based Nanoparticles: An Overview of Biomedical Applications. Journal of Controlled Release, 161, 505-522.
https://doi.org/10.1016/j.jconrel.2012.01.043
[2]  Allahyari, M. and Mohit, E. (2016) Peptide/Protein Vaccine Delivery System Based on PLGA Particles. Human Vaccine & Immunotherapeutics, 12, 806-628.
https://doi.org/10.1080/21645515.2015.1102804
[3]  Mir, M., Ahmed, N. and Rehman, A. (2017) Recent Applications of PLGA Based Nanostructures in Drug Delivery. Colloids and Surfaces B: Biointerfaces, 159, 217-231.
https://doi.org/10.1016/j.colsurfb.2017.07.038
[4]  O’Donnell, P.B. and McGinity, J.W. (1997) Preparation of Microspheres by the Solvent Evaporation Technique. Advanced Drug Delivery Reviews, 28, 45-42.
https://doi.org/10.1016/S0169-409X(97)00049-5
[5]  Murakami, H., Kobayashi, M., Takeuchi, H. and Kawashima, Y. (1999) Preparation of Poly(DL-lactide-co-glycolide) Nanoparticles by Modified Spontaneous Emulsification Solvent Diffusion Method. International Journal of Pharmaceutics, 187, 143-152.
https://doi.org/10.1016/S0378-5173(99)00187-8
[6]  Yamamoto, H., Kuno, Y., Sugimoto, S., Takeuchi, H. and Kawashima, Y. (2005) Surface-Modified PLGA Nanosphere with Chitosan Improved Pulmonary Delivery of Calcitonin by Mucoadhesion and Opening of the Intercellular Tight Junctions. Journal of Controlled Release, 102, 373-381.
https://doi.org/10.1016/j.jconrel.2004.10.010
[7]  Chen, C., Yang, W., Wang, D.T., Chen, C.L., Zhuang, Q.Y. and Kong, X.D. (2014) A Modified Spontaneous Emulsification Solvent Diffusion Method for the Preparation of Curcumin-Loaded PLGA Nanoparticles with Enhanced in Vitro Anti-Tumor Activity. Frontiers of Materials Science, 8, 332-342.
https://doi.org/10.1007/s11706-014-0268-2
[8]  Ogawa, Y., Yamamoto, M., Okada, H., Yashiki, T. and Shimamoto, T. (1988) A New Technique to Efficiently Entrap Leuprolide Acetate into Microcapsules of Polylactic Acid or Copoly(Lactic/Glycolic) Acid. Chemical and Pharmaceutical Bulletin, 36, 1095-1103.
https://doi.org/10.1248/cpb.36.1095
[9]  Cózar-Bernal, M.J., Holgado, M.A., Arias, J.L., Muñoz-Rubio, I., Martín-Banderas, L., álvarez-Fuentes, J. and Fenández-Arévalo. (2011) Insulin-Loaded PLGA Microparticles: Flow Focusing versus Double Emulsion/Solvent Evaporation. Journal of Microencapsulation, 28, 430-441.
https://doi.org/10.3109/02652048.2011.576786
[10]  Wu, J., Ding, D., Ren, G., Xu, X. and Hu, Y. (2009) Sustained Delivery of Endostatin Improves Efficacy of Therapy in Lewis Lung Cancer Model. Journal of Controlled Release, 134, 91-97.
https://doi.org/10.1016/j.jconrel.2008.11.004
[11]  He, J., Zhou, Z., Fan, Y., Zhou, X. and Du, H. (2011) Sustained Release of Low Molecular Weight Heparin from PLGA Microspheres Prepared by a Solid-in-Oil-in-Water Emulsion Method. Journal of Microencapsulation, 28, 763-770.
https://doi.org/10.3109/02652048.2011.629740
[12]  Morita, T., Sakamura, Y., Horikiri, Y., Suzuki, T. and Yoshino, H. (2017) Protein Encapsulation into Biodegradable Microspheres by a Novel S//W Emulsion Method Using Poly (Ethylene Glycol) as a Protein Micronization Adjuvant. Journal of Controlled Release, 69, 435-444.
https://doi.org/10.1016/S0168-3659(00)00326-6
[13]  Toorisaka, E., Ono, H., Arimori, K., Kamiya, N. and Goto, M. (2003) Hypoglycemic Effect of Surfactant-Coated Insulin Solubilized in an Novel Solid-in-Oil-in-Water (S/O/W) Emulsion. International Journal of Pharmaceutics, 252, 271-274.
https://doi.org/10.1016/S0378-5173(02)00674-9
[14]  Larson, K., Raghuraman, B. and Wiencek, J. (1994) Mass-Transfer Model of Mercury Removal from Water via Microemulsion Liquid Membranes. Industrial & Engineering Chemistry Research, 33, 1612-1619.
https://doi.org/10.1021/ie00030a023
[15]  Wen, L. and Papadopoulous, K.D. (2000) Visualization of Water Transport in W1/O/W2 Emulsions. Colloid and Surfaces A: Physicochemical and Engineering Aspects, 174, 159-167.
https://doi.org/10.1016/S0927-7757(00)00508-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133