全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Starch Based Bio-Plastics: The Future of Sustainable Packaging

DOI: 10.4236/ojpchem.2018.82003, PP. 21-33

Keywords: Bioplastic, Starch, Packaging, Sustainable

Full-Text   Cite this paper   Add to My Lib

Abstract:

Petroleum derived plastics dominate the food packaging industry even today. These materials have brought a lot of convenience and attraction to agro, food and packaging industry. These materials also have brought along with them problems relating to the safe-disposal and renewability of these materials. Due to the growing concern over environmental problems of these materials, interest has shifted towards the development and promoting the use of “bio-plastics”. Bio-plastic is a term used for sustainable packaging materials derived from renewable resources i.e. produced from agro/food sources, materials such as starch, cellulose, etc. and which are considered safe to be used in food applications. To enhance the mechanical properties, and water barrier properties, it can be blended easily with other polymer as well as nano fillers. The current paper is a review of the progress of research in starch based sustainable packaging materials.

References

[1]  Sharma, C., Manepalli, P.H., Thatte, A., Thomas, S., Kalarikkal, N. and Alavi, S. (2017) Biodegradable Starch/PVOH/Laponite RD-Based Bionanocomposite Films Coated with Graphene Oxide: Preparation and Performance Characterization for Food Packaging Applications. Colloid and Polymer Science, 295, 1695-1708.
https://doi.org/10.1007/s00396-017-4114-9
[2]  Averous, L., Fringant, C. and Moro, L. (2001) Starch-Based Biodegradable Materials Suitable for Thermodynamics Packaging. Starch/Starke, 53, 368-371.
https://doi.org/10.1002/1521-379X(200108)53:8<368::AID-STAR368>3.0.CO;2-W
[3]  Carraher, C.E.Jr. and Sperling, L.H. (eds.) (1983) Polymer Applications of Renewable-Resource Materials. Plenum Press, New York.
[4]  Ching, C., Kaplan, D. and Thomas, E. (eds.) (1993) Biodegradable Polymers and Packaging. Technomic Publishing Company, Inc., Lancaster.
[5]  Tharanathan, R.N. (2003) Biodegradable Films and Composite Coatings: Past, Present, and Future. Trends in Food Science and Technology, 14, 71-78.
https://doi.org/10.1016/S0924-2244(02)00280-7
[6]  Zubris, K.A.V. and Richards, B.K. (2005) Synthetic Fibers as an Indicator of Land Application of Sludge. Environmental Pollution, 138, 201-211.
https://doi.org/10.1016/j.envpol.2005.04.013
[7]  Brinton, W.F. (2005) Characterization of Man-Made Foreign Matter and Its Presence in Multiple Size Fractions from Mixed Waste Composting. Compost Science & Utilization, 13, 274-280.
https://doi.org/10.1080/1065657X.2005.10702251
[8]  Thompson, R., Moore, C., Andrady, A., Gregory, M., Takada, H. and Weisberg, S. (2005) New Directions in Plastic Debris. Science, 310, 1117.
https://doi.org/10.1126/science.310.5751.1117b
[9]  Barnes, D.K.A., Galgani, F., Thompson, R.C. and Barlaz, M. (2009) Accumulation and Fragmentation of Plastic Debris in Global Environments. Philosophical Transactions of the Royal Society B, 364, 1985-1998.
https://doi.org/10.1098/rstb.2008.0205
[10]  Heindel, J.J. and vom Saal, F.S. (2009) Overview of Obesity and the Role of Developmental Nutrition and Environmental Chemical Exposures. Molecular and Cellular Endocrinology, 304, 90-96.
[11]  Bolt, H.M. (2005) Vinyl Chloride—A Classical Industrial Toxicant of New Interest. Critical Reviews in Toxicology, 35, 307-323.
https://doi.org/10.1080/10408440490915975
[12]  Gennaro, V., Ceppi, M., Crosignani, P. and Montanaro, F. (2008) Reanalysis of Updated Mortality among Vinyl and Polyvinyl Chloride Workers: Confirmation of Historical Evidence and New Findings. BMC Public Health, 8, 21.
https://doi.org/10.1186/1471-2458-8-21
[13]  Avella, M., de Vlieger, J.J., Errico, M.E., Fischer, S., Vacca, P. and Vope, M.G. (2009) Biodegradable Starch/Clay Nanocomposite Films for Food Packaging Applications. Food Chemistry, 93, 548-558.
[14]  Stevens, E.S. (2002) Green Plastics: An Introduction to the New Science of Biodegradable Plastics. Princeton University Press, Princeton.
[15]  Biliaderis, C.G. (1998) Structures and Phase Transitions of Starch Polymers, in Polysaccharide Association Structures in Food. Marcel Dekker, Walter RH, New York, 57-168.
[16]  Imre, B. and Pukánszky, B. (2013) Compatibilization in Bio-Based and Biodegradable Polymer Blends. European Polymer Journal, 49, 1215-1233.
https://doi.org/10.1016/j.eurpolymj.2013.01.019
[17]  Nafchi, A.M., Moradpour, M., Saeidi, M. and Alias, A.K. (2013) Thermoplastic Starches: Properties, Challenges, and Prospects. Starch Starke, 65, 61-72.
https://doi.org/10.1002/star.201200201
[18]  Erkske, D., Viskere, I., Dzene, A., Tupureina, V. and Savenkova, L. (2006) Bio-Based Polymer Composite for Films and Coatings. Proceedings of the Estonian Academy of Sciences. Chemistry, 55, 70-77.
[19]  Scott, G. (2002) Degradable Polymers Principles and Applications. 2nd Edition, Kluwer Academic Publishers, Boston.
https://doi.org/10.1007/978-94-017-1217-0
[20]  Butschli, J. (2005) Packagers Embrace Renewable Resources. Packaging World Magazine.
[21]  Van der Zee, M. (1997) Structure-Biodegradability Relationships of Polymeric Materials. Doctoral Thesis, Universiteit Twente, Enschede.
[22]  Wu, H.J. and Dunn, S.C. (1995) Environmentally Responsible Logistics Systems. International Journal of Physical Distribution and Logistics Management, 25, 20-38.
https://doi.org/10.1108/09600039510083925
[23]  Bos (2016) Bioplastics and Food—Enemies or Allies. Sustainable Plastics 2016 Conference, Köln, 1-2 March 2016.
[24]  Marvizadeh, M.M., Oladzadabbasabadi, N., Mohammadi Nafchi, A. and Jokar, M. (2017) Preparation and Characterization of Bionanocomposite Film Based on Tapioca Starch/Bovine Gelatin/Nanorod Zinc Oxide. International Journal of Biological Macromolecules, 99, 107.
https://doi.org/10.1016/j.ijbiomac.2017.02.067
[25]  Asaf Kleopas, S. (2008) Synthesis and Properties of Starch Based Bio-Materials. University of Groningen, Groningen.
[26]  Wool, R.P. and Sun, X. (2005) Bio-Based Polymer and Composites. Elsevier Academic Press, Cambridge.
[27]  Huda, M.S., Mohanty, Α., Drzal, L.T., Schut, E. and Misra, M. (2005) Green Composites from Recycled Cellulose and Poly (Lactic Acid): Physico-Mechanical and Morphological Properties Evaluation. Materials Science, 40, 4221-4229.
[28]  Graupner, N. (2008) Application of Lignin as Natural Adhesion Promoter in Cotton Fiber-Reinforced Poly(Lactic Acid) (PLA) Composites. Materials Science, 43, 5222-5229.
https://doi.org/10.1007/s10853-008-2762-3
[29]  Avella, M., Bogoeva-Gaceva, G., Buzarovska, A., Errico, M.E., Gentile, G. and Grozdanov, A. (2008) Poly(Lactic Acid)-Based Biocomposites Reinforced with Kenaf Fibers. Journal of Applied Polymer Science, 108, 3542-3551.
https://doi.org/10.1002/app.28004
[30]  Hu, R. and Lim, J. (2007) Fabrication and Mechanical Properties of Completely Biodegradable Hemp Reinforced PLA Composites. Journal of Composite Materials, 41, 1655-1669.
https://doi.org/10.1177/0021998306069878
[31]  Tokoro, R., Vu, D.M., Okubo, K., Tanaka, T., Fujii, T. and Fujiura, T. (2008) How to Improve Mechanical Properties of PolyLactic Acid with Bamboo Fibers. Materials Science, 43, 775-787.
https://doi.org/10.1007/s10853-007-1994-y
[32]  Shikamoto, N., Ohtani, A., Leong, Y.W. and Nakai, A. (2007) Fabrication and Mechanical Properties of Jute/PLA Composites. In: 22nd Technical Conference of the American Society for Composites 2007, Composites, Enabling a New Era in Civil Aviation, Curran Associates, Inc., Red Hook, 151.
[33]  Huda, M.S., Drzal, L.T., Mohanty, A.K. and Misra, M. (2008) Effect of Chemical Modifications of the Pineapple Leaf Fiber Surfaces on the Interfacial and Mechanical Properties of Laminated Biocomposite. Composite Interfaces, 15, 169-191.
https://doi.org/10.1163/156855408783810920
[34]  Zhao, Y.Q., Lau, K.T., Liu, T., Cheng, S., Lam, P.M. and Li, H.L. (2008) Production of a Green Composite, Mixture of Poly(Lactic Acid) and Keratin Fibers from Chicken Feathers. Advanced Materials Research, 47-50, 1225-1228.
[35]  Wang, K.H., Wu, T.M., Shih, Y.F. and Huang, C.M. (2008) Water Bamboo Husk Reinforced Poly (Lactic Acid) Green Composites. Polymer Engineering & Science, 48, 1833-1839.
https://doi.org/10.1002/pen.21151
[36]  Niranjana Prabhu, T. and Prashantha, K. (2016) A Review on Present Status and Future Challenges of Starch Based Polymer Films and Their Composites in Food Packaging Applications, Polymer Composites.
https://doi.org/10.1002/pc.24236
[37]  Ali, A., Yu, L., Liu, H., Khalid, S., Meng, L. and Chen, L. (2017) Preparation and Characterization of Starch-Based Composite Films Reinforced by Corn and Wheat Hulls. Journal of Applied Polymer Science, 134.
https://doi.org/10.1002/app.45159
[38]  Masoomi, M., Tavangar, M. and Razavi, S.M.R. (2015) Preparation and Investigation of Mechanical and Antibacterial Properties of Poly(Ethylene Terephthalate)/Chitosan Blend. RSC Advances, 5, 79200-79206.
https://doi.org/10.1039/C5RA06372H
[39]  Ochoa, T.A., Almendarez, B.E.G., Reyes, A.A., Pastrana, D.M.R., Lopez, G.F.G., Belloso, O.M., et al. (2016) Design and Characterization of Corn Starch Edible Films Including Beeswax and Natural Antimicrobials. Food and Bioprocess Technology, 10, 103-114.
https://doi.org/10.1007/s11947-016-1800-4
[40]  Sung, S.-Y., et al. (2013) Antimicrobial Agents for Food Packaging Applications. Trends in Food Science & Technology, 33, 110-123.
https://doi.org/10.1016/j.tifs.2013.08.001
[41]  Liu, H., Du, Y.M., Wang, X.H. and Sun, L. (2004) Chitosan Kills Bacteria through Cell Membrane Damage. International Journal of Food Microbiology, 95, 147-155.
https://doi.org/10.1016/j.ijfoodmicro.2004.01.022
[42]  Lavoine, N., Desloges, I. and Bras, J. (2014) Microfibrillated Cellulose Coatings as New Release Systems for Active Packaging. Carbohydrate Polymers, 103, 528-537.
https://doi.org/10.1016/j.carbpol.2013.12.035
[43]  Fortunati, E., Luzi, F., Puglia, D., et al (2013) Ternary PVA Nanocomposites Containing Cellulose Nanocrystals from Different Sources and Silver Particles: Part II. Carbohydrate Polymers, 97, 837-848.
https://doi.org/10.1016/j.carbpol.2013.05.015
[44]  Ehivet, F.E., Min, B., Park, M.K. and Oh, J.H. (2011) Characterization and Antimicrobial Activity of Sweetpotato Starch-Based Edible Film Containing Origanum (Thymus capitatus) Oil. Journal of Food Science, 76, C178-C184.
https://doi.org/10.1111/j.1750-3841.2010.01961.x
[45]  Vartiainen, J., Motion, R., Kulonen, H., Rättö, M., Skyttä, E. and Ahvenainen, R. (2004) Chitosan-Coated Paper: Effects of Nisin and Different Acids on the Antimicrobial Activity. Journal of Applied Polymer Science, 94, 986-993.
https://doi.org/10.1002/app.20701
[46]  Azlin-Hasim, S., Cruz-Romero, M.C., Ghoshal, T., Morris, M.A., Cummins, E. and Kerry, J. (2015) Application of Silver Nanodots for Potential Use in Antimicrobial Packaging Applications. Innovative Food Science & Emerging Technologies, 27, 136-143.
https://doi.org/10.1016/j.ifset.2014.10.012
[47]  Kugel, A., Stafslien, S. and Chisholm, B.J. (2011) Antimicrobial Coatings Produced by “Tethering” Biocides to the Coating Matrix: A Comprehensive Review. Progress in Organic Coatings, 72, 222-252.
https://doi.org/10.1016/j.porgcoat.2011.07.004
[48]  Rodríguez, A., Batlle, R. and Nerín, C. (2007) The Use of Natural Essential Oils as Antimicrobial Solutions in Paper Packaging. Part II. Progress in Organic Coatings, 60, 33-38.
https://doi.org/10.1016/j.porgcoat.2007.06.006
[49]  Takala, N., Vu, K.D., Salmieri, S., Khan, R.A. and Lacroix, M. (2013) Antibacterial Effect of Biodegradable Active Packaging on the Growth of Escherichia coli, Salmonella typhimurium and Listeria monocytogenes in Fresh Broccoli Stored at 4 °C. Food Science and Technology, 53, 499-506.
https://doi.org/10.1016/j.lwt.2013.02.024
[50]  El-Wakil, N.A., Hassan, E.A., Abou-Zeid, R.E. and Dufresne, A. (2015) Development of Wheat Gluten/Nanocellulose/Titanium Dioxide Nanocomposites for Active Food Packaging. Carbohydrate Polymers, 124, 337-346.
https://doi.org/10.1016/j.carbpol.2015.01.076
[51]  Reddy, N. and Yang, Y.Q. (2010) Citric Acid Cross-Linking of Starch Films. Food Chemistry, 118, 702-711.
https://doi.org/10.1016/j.foodchem.2009.05.050
[52]  Mlalila, N.G., Swai, H.S., Hilonga, A. and Kadam, D.M. (2016) Antimicrobial Dependence of Silver Nanoparticles on Surface Plasmon Resonance Bands against Escherichia coli. Nanotechnology, Science and Applications, 10, 1-9.
https://doi.org/10.2147/NSA.S123681
[53]  Ghasemlou, M., Aliheidari, N., Fahmi, R., Shojaee-Aliabadi, S., Keshavarz, B., Cran, M.J. and Khaksar, R. (2013) Physical, Mechanical and Barrier Properties of Corn Starch Films Incorporated with Plant Essential Oils. Carbohydrate Polymers, 98, 1117-1126.
https://doi.org/10.1016/j.carbpol.2013.07.026
[54]  Wu, Z., Wu, J., Peng, T., Li, Y., Lin, D., Xing, B., Li, C., Yang, Y., Yang, L., Zhang, L. and Ma, R. (2017) Preparation and Application of Starch/Polyvinyl Alcohol/Citric Acid Ternary Blend Antimicrobial Functional Food Packaging Films. Polymers, 9, 102.
https://doi.org/10.3390/polym9030102
[55]  Hung, M., Yu, J. and Ma, X. (2006) High Mechanical Performance MMT-Urea and Formamide Plasticized Thermoplastic Cornstarch Biodegradable Nanocomposite. Carbohydrate Polymers, 63, 393-399.
https://doi.org/10.1016/j.carbpol.2005.09.006
[56]  Glenn, G.M., Orts, W., Imam, S., Chiou, B.-S. and Wood, D.F. (2014) Starch Plastic Packaging and Agriculture Applications. Publications from USDA-ARS/UNL Faculty, Paper 1459.
http://www.digitalcommons.unl.edu/usdaarsfacpub/1459
[57]  Chen, L. (2017) Preparation Method of Potato Starch-Based Degradable Plastic Film. CN 104292479 A, 11 January 2017.
[58]  Issa, A., Ibrahim, S.A. and Tahergorabi, R. (2016) Sweet Potato Starch/Clay Nanocomposite Film: New Material for Emerging Biodegradable Food Packaging. MOJ Food Processing & Technology, 3, Article ID: 00073.
[59]  Wan, H. and Chen, K. (2015) Ramie Stick Reinforced Starch-Based Fully-Degradable Plastic Film and Preparation Method Thereof. CN 104893004 A, 09 Sept. 2015.
[60]  Sun, Y. (2015) Degradable Starch-Based Plastic Masterbatch and Preparation Method Thereof. EP 2586821 A1, 12 Feb. 2015.
[61]  Tang, S., Zou, Xiong, H. and Tang, H. (2008) Effect of Nano-SiO2 on the Performance of Starch/Polyvinyl Alcohol Blends. Carbohydrate Polymers, 72, 521-526.
https://doi.org/10.1016/j.carbpol.2007.09.019
[62]  Lopez, O.V., Castillo, L.A., Garcia, M.A., Villar, M.A. and Barbosa, S.E. (2015) Food Packaging Bags Based on Thermoplastic Corn Starch Reinforced with Talc Nanoparticles. Food Hydrocolloids, 43, 18-24.
https://doi.org/10.1016/j.foodhyd.2014.04.021
[63]  Jumaidin, R., Sapuan, S.M., Jawaid, M., Ishak, M.R. and Sahari, J. (2017) Effect of Agar on Flexural, Impact, and Thermogravimetric Properties of Thermoplastic Sugar Palm Starch. Current Organic Synthesis, 14, 200-205.
https://doi.org/10.2174/1570179413666160921110732
[64]  Noorbakhsh-Soltani, S.M., Zerafat, M.M. and Sabbaghi, S. (2018) A Comparative Study of Gelatin and Starch-Based Nano-Composite Films Modified by Nano-Cellulose and Chitosan for Food Packaging Application. Carbohydrate Polymers, 189, 48-55.
[65]  Sanyang, M.L., Sapuan, S.M., Jawaid, M., Ishak, M.R. and Sahari, J. (2016) Development and Characterization of Sugar Palm Starch and Poly (Lactic Acid) Bilayer Films. Carbohydrate Polymers, 146, 36-45.
https://doi.org/10.1016/j.carbpol.2016.03.051
[66]  Masmoudi, F., Bessadok, A., Dammak, M., Jaziri, M. and Ammar, E. (2016) Biodegradable Packaging Materials Conception Based on Starch and Polylactic Acid (PLA) Reinforced with Cellulose. Environmental Science and Pollution Research, 23, 20904-20914.
https://doi.org/10.1007/s11356-016-7276-y
[67]  Sorrentino, A., Gorrasi, G. and Vittoria, V. (2007) Potential Perspectives of Bio-Nanocomposites for Food Packaging Applications. Trends in Food Science and Technology, 18, 84-95.
https://doi.org/10.1016/j.tifs.2006.09.004
[68]  Otey, F.H. and Westhoff, R.P. (1982) Biodegradable Starch-Based Blown Films. US 4337181 A, 29 June 1982.
[69]  Erica, B. (2015) Bioplastics. US 9085677 B2, 21 July 2015.
[70]  Villada Castillo, H.S., Navia Porras, D.P. and Castaneda Nino, J.P. (2016) Biodegradable Films Obtained from Cassava Starch and Their Manufacture Process. WO 2013042083 A1, 16 Aug. 2016.
[71]  Ghanbarzadeh, B., Almasi, H. and Entezami, A.A. (2011) Improving the Barrier and Mechanical Properties of Corn Starch-Based Edible Films: Effect of Citric Acid and Carboxymethyl Cellulose. Industrial Crops and Products, 33, 229-235.
https://doi.org/10.1016/j.indcrop.2010.10.016
[72]  López, O.V., Lecot, C.J., Zaritzky, N.E. and García, M.A. (2011) Biodegradable Packages Development from Starch Based Heat Sealable Films. Journal of Food Engineering, 105, 254-263.
https://doi.org/10.1016/j.jfoodeng.2011.02.029
[73]  Dias, A.B., Müller, C.M.O., Larotonda, F.D.S. and Laurindo, J.B. (2010) Biodegradable Films Based on Rice Starch and Rice Flour. Journal of Cereal Science, 51, 213-219.
https://doi.org/10.1016/j.jcs.2009.11.014
[74]  Balakrishnan, S., Gopi, S. and Thomas, U.V. (2017) Resistant Transparent Bionanocomposite Films Based on Potato Starch/Cellulose for Sustainable Packaging. Starch/Stärke.
[75]  Medina-Jaramillo, C., Ochoa-Yepes, O., Bernal, C. and Famá, L. (2017) Active and Smart Biodegradable Packaging Based on Starch and Natural Extracts. Carbohydrate Polymers, 176, 187-194.
https://doi.org/10.1016/j.carbpol.2017.08.079
[76]  Nikolic, V., Velickovic, S. and Popovic, A. (2014) Biodegradation of Polystyrene-Graft-Starch Copolymers in Three Different Types of Soil. Environmental Science and Pollution Research, 21, 9877-9886.
https://doi.org/10.1007/s11356-014-2946-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133