All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Probing the Wave Nature of Light-Matter Interaction

DOI: 10.4236/wjcmp.2018.82005, PP. 62-89

Keywords: Infrared, Light-Matter Interaction, Conservation Of Energy, Wave Energy Harvesting

Full-Text   Cite this paper   Add to My Lib

Abstract:

The wave-particle duality of light is a controversial topic in modern physics. In this context, this work highlights the ability of the wave-nature of light on its own to account for the conservation of energy in light-matter interaction. Two simple fundamental properties of light as wave are involved: its period and its power P. The power P depends only on the amplitude of the wave’s electric and magnetic fields (Poynting’s vector), and can easily be measured with a power sensor for visible and infrared lasers. The advantage of such a wave-based approach is that it unveils unexpected effects of light’s power P capable of explaining numerous results published in current scientific literature, of correlating phenomena otherwise considered as disjointed, and of making predictions on ways to employ the electromagnetic (EM) waves which so far are unexplored. In this framework, this work focuses on determining the magnitude of the time interval that, coupled with light’s power P, establishes the energy conserved in the exchange of energy between light and matter. To reach this goal, capacitors were excited with visible and IR lasers at variable average power P. As the result of combining experimental measurements and simulations based on the law of conservation of energy, it was found that the product of the period of the light by its power P fixes the magnitude of the energy conserved in light’s interaction with the capacitors. This finding highlights that the energy exchanged is defined in the time interval equal to the period of the light’s wave. The validity of the finding is shown to hold in light’s interaction with matter in general, e.g. in the photoelectric effect with x-rays, in the transfer of electrons between energy levels in semiconducting interfaces of field effect transistors, in the activation of photosynthetic reactions, and in the generation of action potentials in retinal ganglion cells to enable vision in vertebrates. Finally, the validity of the finding is investigated in the low frequency spectrum of the EM waves by exploring possible consequences in microwave technology, and in harvesting through capacitors the radio waves dispersed in the environment after being used in telecommunications as a source of usable electricity.

References

[1]  Wheaton, B.R. (2009) Photoelectric Effect. In: Greenberger, D., Hentschel, K. and Weinert, F., Eds., Compendium of Quantum Physics, Springer, Berlin, Heidelberg, 472-475.
https://doi.org/10.1007/978-3-540-70626-7_143
[2]  Kovac, J., Scarel, G., Sakho, O. and Sancrotti, M. (1995) An Experimental Study of the Electronic Structure of C60 Films Grown at the Ag (110) Surface. Journal of Electron Spectroscopy and Related Phenomena, 72, 71-75.
https://doi.org/10.1007/978-3-540-70626-7_143
[3]  Barr, T.L. (1994) Modern ESCA: The Principles and Practice of X-Ray Photoelectron Spectroscopy. Taylor and Francis, Abingdon-on-Thames.
[4]  Lee, H.L. and Flynn, N.T. (2006) X-Ray Photoelectron Spectroscopy. In: Vij, D., Ed., Handbook of Applied Solid State Spectroscopy, Springer, Boston, 485-507.
https://doi.org/10.1007/0-387-37590-2_11
[5]  Barati, F., Grossnickle, M., Su, S., Lake, R.L., Aji, V. and Gabor, N.M. (2017) Hot Carrier-Enhanced Interlayer Electron-Hole Pair Multiplication in 2D Semiconductor Heterostructure Photocells. Nature Nanotechnology, 12, 1134-1139.
https://doi.org/10.1038/nnano.2017.203
[6]  Adinolfi, V. and Sargent, E.H. (2017) Photovoltage Field-Effect Transistors. Nature, 542, 324-327.
https://doi.org/10.1038/nature21050
[7]  Sarker, B.K., Cazalas, E., Chung, T.-F., Childres, I., Jovanovic, I. and Chen, Y.P. (2017) Position-Dependent and Millimeter-Range Photodetection in Phototransistors with Micrometer-Scale Graphene on SiC. Nature Nanotechnology, 12, 668-674.
https://doi.org/10.1038/nnano.2017.46
[8]  University of Colorado at Boulder. The Average Solar Irradiance Is According to Data Provided by the Laboratory for Atmospheric and Space Physics.
[9]  Soum-Glaude, A., Le Gal, A., Bichotte, M., Escape, C. and Dubost, L. (2017) Optical Characterization of TiAlNx/TiAlNy/Al2O3 Tandem Solar Selective Absorber Coatings. Solar Energy Materials & Solar Cells, 170, 254-262.
https://doi.org/10.1016/j.solmat.2017.06.007
[10]  de Vault, D. and Chance, B. (1966) Studies of Photosynthesis Using a Pulsed Laser. Biophysical Journal, 6, 825-847.
https://doi.org/10.1016/S0006-3495(66)86698-5
[11]  Gifford, R.M. and Musgrave, R.B. (1972) Activation Energy and Limiting Factors in Photosynthesis. Australian Journal of Biological Sciences, 25, 419-423.
https://doi.org/10.1071/BI9720419
[12]  Mayer, S.W. (1969) Estimation of Activation Energies for Nitrous Oxide, Carbon Dioxide, Nitrogen Dioxide, Nitric Oxide, Oxygen and Nitrogen Reactions by a Bond-Energy Method. The Journal of Physical Chemistry, 73, 3941-3946.
https://doi.org/10.1021/j100845a064
[13]  Segatta, F., Cupellini, L., Jurinovich, S., Mukamle, S., Dapor, M., Taioli, S., Garavelli, M. and Mennucci, B. (2017) A Quantum Chemical Interpretation of Two-Dimensional Electronic Spectroscopy of Light-Harvesting Complexes. Journal of the American Chemical Society, 139, 7558-7567.
https://doi.org/10.1021/jacs.7b02130
[14]  Kim, M.-H., Vickers, E. and von Gersdorff, H. (2012) Patch-Clamp Capacitance Measurements and Ca2+ Imaging at Single Nerve Terminals in Retinal Slices. Journal of Visualized Experiments, 59, e3345.
[15]  Poynting, J.H. (1884) On the Transfer of Energy in the Electromagnetic Field. Philosophical Transactions of the Royal Society of London, 175, 343-361.
https://doi.org/10.1098/rstl.1884.0016
[16]  Zhao, D., Fabiano, S., Berggren, M. and Crispin, X. (2017) Ionic Thermoelectric Gating Organic Transistors. Nature Communications, 8, 14214.
https://doi.org/10.1098/rstl.1884.0016
[17]  Geiregat, P., Houtepen, A.J., Sagar, L.K., Infante, I., Zapata, F., Grigel, V., Allan, G., Delerue, C., Van Thourhout, D. and Hens, Z. (2018) Continuous-Wave Infrared Optical Gain and Amplified Spontaneous Emission at Ultralow Threshold by Colloidal HgTe Quantum Dots. Nature Materials, 17, 35-40.
https://doi.org/10.1038/nmat5000
[18]  Bagci, T., Simonsen, A., Schmid, S., Villanueva, L.G., Zeuthen, E., Appel, J., Taylor, J.M., Sorensen, A., Usami, K., Schliesser, A. and Polzik, E.S. (2014) Optical Detection of Radio Waves through a Nanomechanical Transducer. Nature, 507, 81-85.
https://doi.org/10.1038/nature13029
[19]  Wu, Z., Plucienik, A., Feiten, F.E., Naschitzki, M., Wachsmann, W., Gewinner, S., Schollkopf, W., Staemmler, V., Kuhlenbeck, H. and Freund, H.-J. (2017) Vibrational Action Spectroscopy of Solids: New Surface-Sensitive Technique. Physical Review Letters, 119, Article ID: 136101.
https://doi.org/10.1103/PhysRevLett.119.136101
[20]  Har-Shemesh, O. and Di Piazza, A. (2012) Peak intensity Measurement of Relativistic Lasers via Nonlinear Thomson Scattering. Optics Letters, 37, 1352-1354.
https://doi.org/10.1364/OL.37.001352
[21]  Information from ScientaOmicron Inc. and Physical Electronics Inc.
[22]  Ivanov, I.G., Henry, A. and Janzén, E. (2005) Ionization Energies of Phosphorus and Nitrogen Donors and Aluminum Acceptors in 4H Silicon Carbide from the Donor-Acceptor Pair Emission. Physical Review B, 71, Article ID: 241201(R).
https://doi.org/10.1103/PhysRevB.71.241201
[23]  Dean, J.C., Mirkovic, T., Toa, Z.S.D., Oblinsky, D.G. and Scholes, G.D. (2016) Vibronic Enhancement of Algae Light Harvesting. Chemistry, 1, 858-872.
https://doi.org/10.1016/j.chempr.2016.11.002
[24]  Nelson, P.C. (2017) From Photon to Neuron: Light, Imaging, Vision. Princeton University Press, Princeton.
[25]  Garcia-López, V., Chen, F., Nilawski, L.G., Duret, G., Aliyan, A., Kolomeisky, A.B., Robinson, J.T., Wang, G., Pal, R. and Tour, J.M. (2017) Molecular Machines Open Cell Membranes. Nature, 548, 567-572.
https://doi.org/10.1038/nature23657
[26]  Stensitzki, T., Yang, Y., Kozich, V., Ahmed, A.A., Kossl, F., Kühn, O. and Heyne, K. (2018) Acceleration of a Ground-State Reaction by Selective Femtosecond-Infrared-Laser-Pulse Excitation. Nature Chemistry, 10, 126-131.
https://doi.org/10.1038/nchem.2909
[27]  Xu, Y., Cao, W., Ahn, K., Jing, J., Chae, J., Huang, N., Deng, N., Gary, D.E. and Wang, H. (2018) Transient Rotation of Photospheric Vector Magnetic Fields Associated with a Solar Flare. Nature Communications, 9, Article No. 46.
[28]  Smit, R., Bouwens, R.J., Carniani, S., Oesch, P.A., Labbé, I., Illingworth, G.D., van der Werf, P., Bradley, L.D., Gonzalez, V., Hodge, J.A., Holwerda, B.W., Maiolino, R. and Zheng, W. (2018) Rotation in [C II]-Emitting Gas in Two Galaxies at a Redshift of 6.8. Nature, 553, 178-181.
https://doi.org/10.1038/nature24631
[29]  Yan, W., Fruhling, C., Golovin, G., Heden, D., Luo, J., Zhang, P., Zhao, B., Zhang, J., Liu, C., Chen, M., Chen, S., Banerjee, S. and Umstadter, D. (2017) High-Order Multiphoton Thomson Scattering. Nature Photonics, 11, 514-520.
[30]  Vollmer, M. (2004) Physics of the Microwave Oven. Physics Education, 39, 74-81.
https://doi.org/10.1088/0031-9120/39/1/006
[31]  Chandler, D. (1987) Introduction to Modern Statistical Mechanics. Oxford University Press Inc., Oxford.
[32]  Gordon, A.L., Schwab, Y., Lang, B.N., Gearhart, G.P., Jobin, T.R., Kaczmar, J.M., Marinelli, Z.J., Mann, H.S., Utter, B.C. and Scarel, G. (2015) Decoupling the Electrical and Entropic Contributions to Energy Transfer from Infrared Radiation to a Power Generator. World Journal of Condensed Matter Physics, 5, 301-318.
https://doi.org/10.4236/wjcmp.2015.54031
[33]  Afanas’ev, V.V. (2012) Internal Photoemission Spectroscopy: Principles and Applications. Elsevier Science, New York.
[34]  Baker-Jarvis, J. and Kim, S. (2012) The Interaction of Radio-Frequency Fields with Dielectric Materials at Macroscopic to Mesoscopic Scales. Journal of Research of NIST, 117, 1-60.
[35]  Ciappina, F., Pérez-Hernández, J.A., Landsman, A.S., Okell, W.A., Zherebtsov, S., Forg, B., Schotz, J., Seiffert, L., Fennel, T., Shaaran, T., Zimmermann, T., Chacón, A., Guichard, R., Zair, A., Tisch, J.W.G., Marangos, J.P., Witting, T., Braun, A., Maier, S.A., Roso, L., Krüger, M., Hommelhoff, P., Kling, M.F., Krausz, F. and Leenstein, M. (2017) Attosecond Physics at the Nanoscale. Reports on Progress in Physics, 80, Article ID: 054401.
https://doi.org/10.1088/1361-6633/aa574e
[36]  Jones, R.C. (1941) A New Calculus for the Treatment of Optical Systems. I. Description and Discussion of the Calculus. Journal of the Optical Society of America, 31, 488-493.
https://doi.org/10.1364/JOSA.31.000488
[37]  Jones, R.C. (1941) A New Calculus for the Treatment of Optical Systems. III. The Sohncke Theory of Optical Activity. Journal of the Optical Society of America, 31, 500-503.
https://doi.org/10.1364/JOSA.31.000500
[38]  Jones, R.C. (1942) A New Calculus for the Treatment of Optical Systems. IV. Journal of the Optical Society of America, 32, 486-493.
https://doi.org/10.1364/JOSA.32.000486
[39]  St. John, T.C., Marinelli, Z.J., Kaczmar, J.M., Given, R.P., Wenger, K.S., Utter, B.C. and Scarel, G. (2016) Conversion of Infrared Light into Usable Energy. Proceedins of SPIE, 9927, 99270C.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413