All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

A Current Review on the Synthesis and Magnetic Properties of M-Type Hexaferrites Material

DOI: 10.4236/wjcmp.2018.82004, PP. 36-61

Keywords: Hexagonal Structure, Sol-Gel Synthesis Technique, Co-Precipitation Technique, TEM, VSM

Full-Text   Cite this paper   Add to My Lib

Abstract:

After the discovery of hexagonal ferrites or hexaferrites, it has been become important materials commercially and technically to study which is still growing on. In this article, we have reviewed about the M-type hexaferrites including their structural, synthesis techniques and important magnetic properties. The role of experimental synthesizing techniques adopted for preparation of M-type hexaferrites on the various parameters studied in this review paper. The substitution of holonium in BaM ferrite reduces the value of coercivity but not saturation magnetization and ramanence and the cobalt-titanium substituted ferrites were the most important M-type ferrites in the field of application in microwave properties and magnetic field industry.

References

[1]  Smit, J. and Wijn, H.P.J. (1959) Ferrites. Phil. Techn Lib., Eindhoven, 177.
[2]  Kojima, H. and Wohlfarth (1953) Ferromagnetic Materials. Amsterdam, 3, 305.
https://doi.org/10.1016/S1574-9304(05)80091-4
[3]  Feynman, R.P., Leighton, R.B. and Sands, M. (2005) The Feynman Lectures on Physics. 2nd Edition, Chapter 34, Addison-Wesley, Boston.
[4]  Rathenau, G.W., Smit, J. and Stuyts, A.L. (1952) Ferroxdure: A Class of New Permanent Magnetic Materials. Philips Technical Review, 13, 7.
[5]  Landau, L.D. and Lifshitz, E.M. (2008) On the Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Bodies. Physikalische Zeitschrift der Sowjetunion, 53, 14-22.
[6]  Weiss, M.T. and Anderson, P.W. (1955) Ferromagnetic Resonance in Ferroxdure. Physical Review, 98, 925-926.
https://doi.org/10.1103/PhysRev.98.925
[7]  Sixtus, K.J., Kronenberg, K.J. and Tenzer, R.K. (1956) Investigations on Barium Ferrite Magnets. Journal of Applied Physics, 27, 1051-1057.
https://doi.org/10.1063/1.1722540
[8]  Harris, V.G., Chen, Z., Chen, Y., Yoon, S., Sakai, T., Gieler, A., Yang, A., He, Y., Ziemer, K.S., Sun, N.X. and Vittoria, C. (2006) Ba-Hexaferrite Films for Next Generation Microwave Devices (Invited). Journal of Applied Physics, 99, 08M911.
[9]  Ozgur, U., Alivov, Y. and Morkoc, H. (2009) Microwave Ferrites, Part 1: Fundamental Properties. Journal of Materials Science: Materials in Electronics, 20, 789-834.
https://doi.org/10.1007/s10854-009-9923-2
[10]  Pullar, R.C. (2012) Hexagonal Ferrites: A Review of the Synthesis, Properties and Applications of Hexaferrite Ceramics. Progress in Materials Science, 57, 1191-1334.
https://doi.org/10.1016/j.pmatsci.2012.04.001
[11]  Braun, P.B. (1957) The Crystal Structure of a New Group of Ferromagnetic Compounds. Philips Research Reports, 12, 491-548.
[12]  Sugimoto, M. and Wohfarth, E.P. (1980) Ferromagnetic Materials. North-Holland Physics Publishing, Amsterdam, Vol. 3, 392-440.
[13]  Kamishima, K., Hosaka, N., Kakizaki, K. and Hiratsuka, N. (2011) Crystallographic and Magnetic Properties of Cu2X, Co2X and Ni2X Hexaferrites. Journal of Applied Physics, 109, Article ID: 013904.
https://doi.org/10.1063/1.3527933
[14]  Bertaut, F., Deschamps, A. and Pauthenet, R. (1958) Comptes Rendus de l’Académie des Sciences, 246, 2594-9597.
[15]  Albanese, G. and Deriu, A. (1979) Magnetic Properties of Al, Ga, Sc, in Substituted Barium Ferrits: A Comparative Analysis. Ceramurgia International, 5, 3-10.
https://doi.org/10.1016/0390-5519(79)90002-4
[16]  Von Aulok, W.H. (1965) Handbook of Microwave Ferrites. Academic Press, New York.
[17]  Adelskold, V. (1938) Crystal Structure of Lead Dodecairon (III) Oxide. Arkiv for Kemi, Mineralogi och Geologi A, 12, 1-9.
[18]  (2012) Structures of BaFe12O19.
http://som.web.cmu.edu/structures/S063-BaFe12O19.html
[19]  Kreisel, J., Lucazeau, G. and Vincent, H. (1999) Raman Study of Substituted Barium Ferrite Single Crystals, BaFe12−2xMexCoxO19 (Me = Ir, Ti). Raman Spectroscopy, 30, 115-120.
https://doi.org/10.1002/(SICI)1097-4555(199902)30:2<115::AID-JRS354>3.0.CO;2-D
[20]  Kreisel, J., Vincent, H., Tasset, F., Paté, M. and Ganne, J.P. (2001) An Investigation of the Magnetic Anisotropy Change in BaFe12−2xTixCoxO19 Single Crystals. Journal of Magnetism and Magnetic Materials, 224, 17-29.
https://doi.org/10.1016/S0304-8853(00)01355-X
[21]  Fu, H., Zhai, H.R., Zhang, H.C., Gu, B.X. and Li, J.Y. (1986) Magnetic Properties of Mn Substituted Barium Ferrite. Journal of Magnetism and Magnetic Materials, 54-57, 905-906.
https://doi.org/10.1016/0304-8853(86)90307-0
[22]  Gershov, I.Y. (1964) Barium Ferrite Permanent Magnets. Soviet Powder Metallurgy and Metal Ceramics, 1, 386-393.
https://doi.org/10.1007/BF00774124
[23]  Naiden, E.P., Itin, V.I. and Terekhova, O.G. (2003) Mechanochemical Modification of the Phase Diagrams of Hexagonal Oxide Ferrimagnets. Technical Physics Letters, 29, 889-891.
https://doi.org/10.1134/1.1631354
[24]  Mahmood, S.H., Aloqaily, A.N., Maswadeh, Y., Awadallah, A., Bsoul, I., Awawdeh, M. and Juwhari, H.K. (2015) Effects of Heat Treatment on the Phase Evolution, Structural, and Magnetic Properties of Mo-Zn Doped M-Type Hexaferrites. Solid State Phenomena, 232, 65-92.
https://doi.org/10.4028/www.scientific.net/SSP.232.65
[25]  Mahmood, S., Aloqaily, A., Maswadeh, Y., Awadallah, A., Bsoul, I. and Juwhari, H. (2014) Structural and Magnetic Properties of Mo-Zn Substituted (BaFe12−4xMoxZn3xO19) M-Type Hexaferrites. Material Science Research India, 11, 9-20.
https://doi.org/10.13005/msri/110102
[26]  Turilli, G., Licci, F., Rinaldi, S. and Deriu, A. (1986) Mn2+ , Ti4+ Substituted Barium Ferrite. Journal of Magnetism and Magnetic Materials, 59, 127-131.
https://doi.org/10.1016/0304-8853(86)90019-3
[27]  Awadallah, A., Mahmood, S.H., Maswadeh, Y., Bsoul, I., Awawdeh, M., Mohaidat, Q.I. and Juwhari, H. (2016) Structural, Magnetic, and Mossbauer Spectroscopy of Cu Substituted M-Type Hexaferrites. Materials Research Bulletin, 74, 192-201.
https://doi.org/10.1016/j.materresbull.2015.10.034
[28]  Ozkan, O.T. and Erkalfa, H. (1994) The Effect of B2O3 Addition on the Direct Sintering of Barium Hexaferrite. Journal of the European Ceramic Society, 14, 351-358.
https://doi.org/10.1016/0955-2219(94)90072-8
[29]  Lisjak, D. and Drofenik, M. (2007) The Mechanism of the Low-Temperature Formation of Barium Hexaferrite. Journal of the European Ceramic Society, 27, 4515-4520.
https://doi.org/10.1016/j.jeurceramsoc.2007.02.202
[30]  Wang, J.P., Ying, L., Zhang, M.L., Qiao, Y.J. and Tian, X. (2008) Comparison of the Sol-Gel Method with the Coprecipitation Technique for Preparation of Hexagonal Barium Ferrite. Chemical Research in Chinese Universities, 24, 525-528.
https://doi.org/10.1016/S1005-9040(08)60110-5
[31]  Harikrishnan, V., Saravanan, P., Vizhi, R.E., Babu, D.R., Vinod, V., Kejzlar, P. and Cerník, M. (2016) Effect of Annealing Temperature on the Structural and Magnetic Properties of CTAB Capped SrFe12O19 Platelets. Journal of Magnetism and Magnetic Materials, 401,775-783.
https://doi.org/10.1016/j.jmmm.2015.10.122
[32]  Davoodi, A. and Hashemi, B. (2012) Investigation of the Effective Parameters on the Synthesis of Strontium Hexaferrite Nanoparticles by Chemical Coprecipitation Method. Journal of Alloys and Compounds, 512,179-184.
https://doi.org/10.1016/j.jallcom.2011.09.059
[33]  Janasi, S.R., Rodrigues, D., Landgraf, F.J. and Emura, M. (2000) Magnetic Properties of Coprecipitated Barium Ferrite Powders as a Function of Synthesis Conditions. IEEE Transactions on Magnetics, 36, 3327-3329.
https://doi.org/10.1109/20.908788
[34]  Jacobo, S.E., Domingo-Pascual, C., Rodrigez-Clemente, R. and Blesa, M.A. (1997) Synthesis of Ultrafine Particles of Barium Ferrite by Chemical Coprecipitation. Journal of Materials Science, 32, 1025-1028.
https://doi.org/10.1023/A:1018582423406
[35]  Matutes-Aquino, J., Diaz-Castanón, S., Mirabal-Garcia, M. and Palomares-Sánchez, S. (2000) Synthesis by Coprecipitation and Study of Barium Hexaferrite Powders. Scripta Materialia, 42, 295-299.
https://doi.org/10.1016/S1359-6462(99)00350-4
[36]  Shepherd, P., Mallick, K.K. and Green, R.J. (2007) Magnetic and Structural Properties of M-Type Barium Hexaferrite Prepared by Co-Precipitation. Journal of Magnetism and Magnetic Materials, 311, 683-692.
https://doi.org/10.1016/j.jmmm.2006.08.046
[37]  Gulshan, F. and Okada, K. (2013) The Preparation of Alumina-Iron Oxide Compounds by Coprecipitation Method and Its Characterization. American Journal of Materials Science and Engineering, 1, 6-11.
[38]  Jamalian, M. (2015) An Investigation of Structural, Magnetic and Microwave Properties of Strontium Hexaferrite Nanoparticles Prepared by a Sol-Gel Process with Doping Sn and Tb. Journal of Magnetism and Magnetic Materials, 378, 217-220.
https://doi.org/10.1016/j.jmmm.2014.11.047
[39]  Zhong, W., Ding, W., Zhang, N., Hong, J., Yan, Q. and Du, Y. (1997) Key Step in Synthesis of Ultrafine BaFe12O19 by Sol-Gel Technique. Journal of Magnetism and Magnetic Materials, 168, 196-202.
https://doi.org/10.1016/S0304-8853(96)00664-6
[40]  Ninad, B., Patil, D., Shelka, A.R., Deshpande, N.G. and Puri, V.R. (2015) Structural, Dielectric and Magnetic Properties of Nickel Substituted Cobalt Ferrite Nanoparticles: Effect of Nickel Concentration. AIP Advances, 5, Article ID: 097166.
[41]  Alange, R.C., Khirade, P.P., Birajdar, S.D., Humbe, A.V. and Jadhav, K.M. (2016) Structural, Magnetic and Dielectric Properties of Al-Cr Co-Substituted M-Type Barium Hexaferrite Nanoparticles. Journal of Molecular Structure, 1106, 460-467.
https://doi.org/10.1016/j.molstruc.2015.11.004
[42]  Mahmood, S.H., Jaradat, F.S., Lehlooh, A.F. and Hammoudeh, A. (2014) Structural Properties and Hyperfine Interactions in Co-Zn Y-Type Hexaferrites Prepared by Sol-Gel Method. Ceramics International, 40, 5231-5236.
https://doi.org/10.1016/j.ceramint.2013.10.092
[43]  Abbas, W., Ahmad, I., Kanwal, M., Murtaza, G., Ali, I., Khan, M.A., Akhtar, M.N. and Ahmad, M. (2015) Structural and Magnetic Behavior of Pr-Substituted M-Type Hexagonal Ferrites Synthesized by Sol-Gel Auto-Combustion for a Variety of Applications. Journal of Magnetism and Magnetic Materials, 374, 187-191.
https://doi.org/10.1016/j.jmmm.2014.08.029
[44]  Thompson, S., Shirtcliffe, N.J., O’Keefe, E.S., Appleton, S. and Perry, C.C. (2005) Synthesis of SrCoxTixFe(12−2x)O19 through Sol-Gel Auto-Ignition and Its Characterisation. Journal of Magnetism and Magnetic Materials, 297, 100-1007.
https://doi.org/10.1016/j.jmmm.2004.10.102
[45]  Meng, Y., He, M., Zeng, Q., Jiao, D., Shukla, S., Ramanujan, R. and Liu, Z. (2014) Synthesis of Barium Ferrite Ultrafine Powders by a Sol-Gel Combustion Method Using Glycine Gels. Journal of Alloys and Compounds, 583, 220-225.
https://doi.org/10.1016/j.jallcom.2013.08.156
[46]  Bahadur, D., Rajakumar, S. and Kumar, A. (2006) Influence of Fuel Ratios on Auto Combustion Synthesis of Barium Ferrite Nano Particles. Journal of Chemical Sciences, 118, 15-21.
https://doi.org/10.1007/BF02708761
[47]  Shi, L., Zeng, C., Jin, T., Wang, T. and Tsabaki, N. (2012) A Sol-Gel Auto-Combustion Method to Prepare Cu/ZnO Catalysis for Low Temp. Methanol Synthesis, 2, 2569-2577.
[48]  Byrappa, K. and Yoshimura, M. (2001) Handbook of Hydrothermal Technology. Noyes Publications, Park Ridge.
[49]  Liu, Wang, J., Gan, L.M. and Ng, S.C. (1999) Improving the Magnetic Properties of Hydrothermally Synthesized Barium Ferrite. Journal of Magnetism and Magnetic Materials, 195, 452-459.
https://doi.org/10.1016/S0304-8853(99)00123-7
[50]  Ataie, A., Harris, I. and Ponton, C. (1995) Magnetic Properties of Hydrothermally Synthesized Strontium Hexaferrite as a Function of Synthesis Conditions. Journal of Materials Science, 30, 1429-1433.
https://doi.org/10.1007/BF00375243
[51]  Primc, D., Makovec, D., Lisjak, D. and Drofenik, M. (2009) Hydrothermal Synthesis of Ultrafine Barium Hexaferrite Nanoparticles and the Preparation of Their Stable Suspensions. Nanotechnology, 20, 315-605.
https://doi.org/10.1088/0957-4484/20/31/315605
[52]  Drofenik, M., Ban, I., Makovec, D., Makovec, A., Jaglicic, Z., Hanzel, D. and Lisjak, D. (2011) The Hydrothermal Synthesis of Super-Paramagnetic Barium Hexaferrite Particles. Materials Chemistry and Physics, 127, 415-419.
https://doi.org/10.1016/j.matchemphys.2011.02.037
[53]  Joshi, N., Grewal, G.S., Shrinet, V., Pratap, A. and Buch, N.J. (2010) Synthesis and Characterization of Nano-Barium Titanate Prepared by Hydrothermal Process. Integrated Ferroelectrics, 115, 142-148.
https://doi.org/10.1080/10584587.2010.496614
[54]  Ahmed, T.T., Rahmanand, I.Z. and Rahman, M.A. (2004) Study on the Properties of the Copper Substituted NiZn Ferrites. Proceedings of the International Conference in Advances in Materials and Processing Technologies, 153-154, 797-803.
https://doi.org/10.1016/j.jmatprotec.2004.04.188
[55]  Nakamura Rao, T., Okanoand, Y. and Miura, S. (1998) Interfacial Diffusion between Ni-Zn-Cu Ferrite and Ag during Sintering. Journal of Materials Science, 33, 1091-1094.
https://doi.org/10.1023/A:1004344719076
[56]  Sankaranarayanan, V., Pankhurst, Q., Dickson, D. and Johnson, C. (1993) Ultrafine Particles of Barium Ferrite from a Citrate Precursor. Journal of Magnetism and Magnetic Materials, 120, 73-75.
https://doi.org/10.1016/0304-8853(93)91290-N
[57]  Sankaranarayanan, V. and Khan, D. (1996) Mechanism of the Formation of Nanoscale M-Type Barium Hexaferrite in the Citrate Precursor Method. Journal of Magnetism and Magnetic Materials, 153, 337-346.
https://doi.org/10.1016/0304-8853(95)00537-4
[58]  Sankaranarayanan, V., Pankhurst, Q., Dickson, D. and Johnson, C. (1993) An Investigation of Particle Size Effects in Ultrafine Barium Ferrite. Journal of Magnetism and Magnetic Materials, 125, 199-208.
https://doi.org/10.1016/0304-8853(93)90838-S
[59]  Shankar, V., Ahmad, T. and Ganguli, A.K. (2004) Investigation of Ba2−xSrxTiO4: Structural Aspects and Dielectric Properties. Bulletin of Materials Science, 27, 421-427.
https://doi.org/10.1007/BF02708558
[60]  Arendt, R.H. (1973) The Molten Salt Synthesis of Single Domain BaFe12O19 and SrFe12O19 Crystals. Journal of Solid State Chemistry, 8, 339-347.
https://doi.org/10.1016/S0022-4596(73)80031-3
[61]  Chin, T.S., Hsu, S. and Deng, M. (1993) Barium Ferrite Particulates Prepared by a Salt-Melt Method. Journal of Magnetism and Magnetic Materials, 120, 64-68.
https://doi.org/10.1016/0304-8853(93)91288-I
[62]  Kimura, T. (2011) Molten Salt Synthesis of Ceramic Powders. In: Advances in Ceramics, IntechOpen, London, 75-100.
https://doi.org/10.5772/20472
[63]  Topal, U. (2012) Improvement of the Remanence Properties and the Weakening of Interparticle Interactions in BaFe12O19 Particles by B2O3 Addition. Physica B: Condensed Matter, 407, 2058-2062.
https://doi.org/10.1016/j.physb.2012.02.004
[64]  Topal, U. (2012) Towards Further Improvements of the Magnetization Parameters of B2O3-Doped BaFe12O19 Particles: Etching with Hydrochloric Acid. Journal of Superconductivity and Novel Magnetism, 25, 1485-1488.
https://doi.org/10.1007/s10948-012-1486-4
[65]  Mohsen, Q. (2010) Barium Hexaferrite Synthesis by Oxalate Precursor Route. Journal of Alloys and Compounds, 500, 125-128.
https://doi.org/10.1016/j.jallcom.2010.03.230
[66]  Topal, U., Ozkan, H. and Dorosinskii, L. (2007) Finding Optimal Fe/Ba Ratio to Obtain Single Phase BaFe12O19 Prepared by Ammonium Nitrate Melt Technique. Journal of Alloys and Compounds, 428, 17-21.
https://doi.org/10.1016/j.jallcom.2006.03.047
[67]  Topal, U., Ozkan, H. and Sozeri, H. (2004) Synthesis and Characterization of Nanocrystalline BaFe12O19 Obtained at 850 °C by Using Ammonium Nitrate Melt. Journal of Magnetism and Magnetic Materials, 284, 416-422.
https://doi.org/10.1016/j.jmmm.2004.07.009
[68]  El-Sayed, S., Meaz, T., Amer, M. and El Shersaby, H. (2013) Magnetic Behavior and Dielectric Properties of Aluminum Substituted M-Type Barium Hexaferrite. Physica B: Condensed Matter, 426, 137-143.
https://doi.org/10.1016/j.physb.2013.06.026
[69]  Soman, V.V., Nanoti, V. and Kulkarni, D. (2013) Dielectric and Magnetic Properties of Mg-Ti Substituted Barium Hexaferrite. Ceramics International, 39, 5713-5723.
https://doi.org/10.1016/j.ceramint.2012.12.089
[70]  Bsoul, I. and Mahmood, S. (2010) Magnetic and Structural Properties of BaFe12−xGaxO19 Nanoparticles. Journal of Alloys and Compounds, 489, 110-114.
https://doi.org/10.1016/j.jallcom.2009.09.024
[71]  Yu, H.F. (2013) BaFe12O19 Powder with High Magnetization Prepared by Acetone-Aided Coprecipitation. Journal of Magnetism and Magnetic Materials, 341, 79-85.
https://doi.org/10.1016/j.jmmm.2013.04.030
[72]  Pashkova, E., Solovyova, E., Kotenko, I., Kolodiazhnyi, T. and Belous, A. (2011) Effect of Preparation Conditions on Fractal Structure and Phase Transformations in the Synthesis of Nanoscale M Type Barium Hexaferrite. Journal of Magnetism and Magnetic Materials, 323, 2497-2503.
https://doi.org/10.1016/j.jmmm.2011.05.026
[73]  Kaur, T. and Srivastava, A. (2013) Effect of pH on Magnetic Properties of Doped Barium Hexaferrite. International Journal of Research in Mechanical Engineering & Technology, 3, 171-173.
[74]  Khademi, F., Poorbafrani, A., Kameli, P. and Salamati, H. (2012) Structural, Magnetic and Microwave Properties of Eu-Doped Barium Hexaferrite Powders. Journal of Superconductivity and Novel Magnetism, 25, 525-531.
https://doi.org/10.1007/s10948-011-1323-1
[75]  Li, Y., Wang, Q.Z. and Yang, H. (2009) Synthesis, Characterization and Magnetic Properties on Nanocrystalline BaFe12O19 Ferrite. Current Applied Physics, 9, 1375-1380.
https://doi.org/10.1016/j.cap.2009.03.002
[76]  Dursun, S., Topkaya, R., Akdogan, N. and Alkoy, S. (2012) Comparison of the Structural and Magnetic Properties of Submicron Barium Hexaferrite Powders Prepared by Molten Salt and Solid State Calcination Routes. Ceramics International, 38, 3801-3806.
https://doi.org/10.1016/j.ceramint.2012.01.028
[77]  Liu, Y., Drew, M.G., Liu, Y., Wang, J. and Zhang, M. (2010) Preparation, Characterization and Magnetic Properties of the Doped Barium Hexaferrites BaFe12−2xCox/2Znx/2SnxO19, x = 0.0 2.0. Journal of Magnetism and Magnetic Materials, 322, 814-818.
https://doi.org/10.1016/j.jmmm.2009.11.009
[78]  Yamauchi, T., Tsukahara, Y., Sakata, T., Mori, H., Chikata, T., Katoh, S. and Wada, Y. (2009) Barium Ferrite Powders Prepared by Microwave-Induced Hydrothermal Reaction and Magnetic Property. Journal of Magnetism and Magnetic Materials, 321, 8-11.
https://doi.org/10.1016/j.jmmm.2008.07.005
[79]  Kitakami, O., Goto, K. and Sakurai, T. (1988) A Study of the Magnetic Domains of Isolated Fine Particles of Ba Ferrite. Japanese Journal of Applied Physics, 27, 2274-2277.
https://doi.org/10.1143/JJAP.27.2274
[80]  Hirayama, T., Ru, Q., Tanki, T. and Tonomura, A. (1993) Observation of Magnetic-Domain States of Barium Ferrite Particles by Electron Holography. Applied Physics Letters, 63, 418.
https://doi.org/10.1063/1.110011
[81]  Went, J.J., Rathenau, G.W., Gorter, E.W. and Van Oosterhout, G.W. (1952) Hexagonal Iron-Oxide Compounds as Permanent-Magnet Materials. Physical Review Journals Archive, 86, 424.
https://doi.org/10.1103/PhysRev.86.424.2
[82]  Brahma, P., Giri, A.K., Chakravorty, D., Roy, M. and Bahadur, D. (1992) Magnetic Properties of As2O3- and Sb2O3-Doped Ba-M Hexagonal Ferrites Prepared by the Sol-Gel Method. Journal of Magnetism and Magnetic Materials, 117, 163-168.
https://doi.org/10.1016/0304-8853(92)90306-9
[83]  Li, C.J., Wang, B. and Wang, J.-N. (2012) Magnetic and Microwave Absorbing Properties of Electrospun Ba(1−x)LaxFe12O19 Nanofibers. Journal of Magnetism and Magnetic Materials, 324, 1305-1311.
https://doi.org/10.1016/j.jmmm.2011.11.016
[84]  Dhage, V.N., Mane, M.L., Babrekar, M.K., Kale, C.M. and Jadhav, K.M. (2011) Influence of Chromium Substitution on Structural and Magnetic Properties of BaFe12O19 Powder Prepared by Sol-Gel Auto Combustion Method. Journal of Alloys and Compounds, 509, 4394-4398.
https://doi.org/10.1016/j.jallcom.2011.01.040
[85]  Lee, J., Hong, Y.-K., Lee, W., Abo, G.S., Park, J., Neveu, N., Seong, W.-M., Park, S.-H. and Ahn, W.-K. (2012) Soft M-Type Hexaferrite for Very High Frequency Miniature Antenna Applications. Journal of Applied Physics, 111, 07A520.
https://doi.org/10.1063/1.3679468
[86]  Rai, G.M., Iqbal, M.A. and Kubra, K.T. (2010) Effect of Ho3+ Substitutions on the Structural and Magnetic Properties of BaFe12O19 Hexaferrites. Journal of Alloys and Compounds, 495, 229-233.
https://doi.org/10.1016/j.jallcom.2010.01.133
[87]  Litsardakis, G., Manolakis, J. and Efthimiadis, K. (2007) Structural and Magnetic Properties of Barium Hexaferrites with Gd-Co Substitution. Journal of Alloys and Compounds, 427, 194-198.
https://doi.org/10.1016/j.jallcom.2006.02.044
[88]  Litsardakis, G., Manolakis, J., Serletis, C. and Efthimiadis, K.G. (2007) Structural and Magnetic Properties of Barium-Gadolinium Hexaferrites. Journal of Magnetism and Magnetic Materials, 310, e884-e886.
https://doi.org/10.1016/j.jmmm.2006.10.1107
[89]  Iqbal, M.J. and Farooq, S. (2010) Impact of Pr-Ni Substitution on the Electrical and Magnetic Properties of Chemically Derived Nanosized Strontium-Barium Hexaferrites. Journal of Alloys and Compounds, 505, 560-567.
https://doi.org/10.1016/j.jallcom.2010.06.073
[90]  Verwey, E.J.W. and Boer, J.H. (1936) Cation Arrangement in a Few Oxides with Crystal Structures of the Spinel Type. Recueil des Travaux Chimiques des Pays-Bas, 55, 531-540.
https://doi.org/10.1002/recl.19360550608
[91]  Singh, V.P. (2015) Study of Substituted M-Type Barium Nanohexaferrites Synthesized via Sol-Gel Auto Combustion Technique. PhD Dissertation, Himachal Pradesh University, Shimla.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413