In this work, we present our theory and principles of the mathematical foundations of Lobachevskian (hyperbolic) astrophysics and cosmology which follow from a mathematical interpretation of experimental data in a Lobachevskian non-expanding Universe. Several new scientific formulas of practical significance for astrophysics, astronomy, and cosmology are presented. A new method of calculating (from experimental data) the curvature of a Lobachevskian Universe is given, resulting in an estimated curvature-K on the order of 10−52 m−2. Our model also estimates the radius of the non-expanding Lobachevskian Universe in a Poincare ball model as approximately 14.9 bly. A rigorous theoretical explanation in terms of the fixed Lobachevskian geometry of a non-expanding Universe is provided for experimental data acquired in the Supernova Project, showing an excellent agreement between experimental data and our theoretical formulas. We present new geometric equations relating brightness dimming and redshift, and employ them to fully explain the erroneous reasoning and erroneous conclusions of Perlmutter, Schmidt, Riess and the 2011 Nobel Prize Committee regarding “accelerated expansion” of the Universe. We demonstrate that experimental data acquired in deep space astrophysics when interpreted in terms of Euclidean geometry will result in illusions of space expansion: an illusion of “linear space expansion”—Hubble, and an illusion of “accelerated (non-linear) space expansion”—Perlmutter, Schmidt, Riess.
Bedford, T., Keane, M. and Series, K. (1991) Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces. Oxford University Press, Oxford.
[3]
Bonola, R. (1955) Non Euclidean Geometry. Dover Publications Inc., New York. (This book contains Lobachevski’s original paper.)
[4]
Buseman, H. and Kelly, P.J. (1953) Projective Geometry and Projective Metrics. Academic Press, New York.
[5]
Greenberg, M.J. (2008) Euclidean and Non-Euclidean Geometry. W.H. Freeman and Co., New York.
[6]
Iversen, B. (1992) Hyperbolic Geometry. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511569333
[7]
von Brzeski, G. and von Brzeski, V. (2003) Topological Frequency. Shifts, Electromagnetic Field in Lobachevskian Geometry. Progress in Electromagnetic Research, PIER, 39, 281-298. https://doi.org/10.2528/PIER02112101
[8]
von Brzeski, G. and von Brzeski, V. (2003) Topological Intensity Shifts. Electromagnetic Field in Lobachevskian Geometry. Progress in Electromagnetic Research, PIER, 43, 161.
[9]
von Brzeski, G. (2007) Application of Lobachevsky’s Formula on Angle of Parallelism to Geometry of Space and to Cosmological Redshift. Russian Journal of Mathematical Physics, 14, 366-369. https://doi.org/10.1134/S1061920807030107
[10]
von Brzeski, G. (2008) Expansion of the Universe—Mistake of Edwin Hubble? Cosmological Redshift and Related Electromagnetic Phenomena in Static Lobachevskian (Hyperbolic) Universe. Acta Physica Polonica, 39, 1501-1520.
[11]
von Brzeski, G. and von Brzeski, V. (2009) Mathematical Theory of Cosmological Redshift in a Static Lobachevskian Universes: Mistake of Edwin Hubble. Astronomical Society of the Pacific, Conference Series, 413, 143-151.
[12]
von Brzeski, G. and von Brzeski, V. (2017) CMB—A Geometric, Lorentz Invariant Model in Non-Expanding Lobachevskian Universe with a Black Body Spectral Distribution Function. Journal of Modern Physics, 8, 2104-2121. https://doi.org/10.4236/jmp.2017.813129
[13]
Kadomtsev, S.B., Poznyak, E.G. and Sokolov, D.D. (1984) Certain Questions of Lobachevskii Geometry Connected with Physics. Journal of Soviet Mathematics, 25, 1331-1350. https://doi.org/10.1007/BF01084676
[14]
Hubble, E. (1929) A Relation between Distance and Radial Velocity among Extra Galactic Nebulae. Proceedings of the National Academy of Sciences of the United States of America, 15, 168-173.
[15]
Perlmutter, S. Supernovae, Dark Energy, and the Accelerating Universe. The Status of the Cosmological Parameters. http://www.slac.stanford.edu/econf/C990809/docs/perlmutter.pdf
[16]
Nobel Prize 2011. https://www.nobelprize.org/nobel_prizes/physics/laureates/2011/press.html
[17]
Schempp, W. (1985) Analog Radar Signal Design and Digital Signal Processing—A Heisenberg Nilpotent Lie Group Approach. Mathematische Forschungsberichte, 147/1985, Universitat Siegen, Germany.