全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Statistical and Probability Quantification of Hydrologic Dynamics in the Lake Tuscaloosa Watershed, Alabama, USA

DOI: 10.4236/gep.2018.65008, PP. 91-100

Keywords: Surface Water and Groundwater, Statistics, Probability, Non-Stationary Evolu-tion

Full-Text   Cite this paper   Add to My Lib

Abstract:

Interconnected components of water cycle, including surface water, groundwater, and precipitation, can exhibit complex hydrologic dynamics. This study investigates dynamics embedded in surface water, groundwater, and precipitation time series data in the Lake Tuscaloosa watershed located in northern Alabama, using standard statistics and non-stationarity analysis. Standard statistics analysis shows that less water is available in this watershed over time. A significant correlation between different data sets is found, and groundwater is found to be slower evolving than its nearby surface systems. Non-stationarity analysis based on time scale-local Hurst exponents calculated by the multifractal detrended fluctuation approach shows that, on one hand, the stream system exhibits non-stationarity properties similar to precipitation, as expected. On the other hand, groundwater and lake stage non-stationarity is found to be influenced by the seasonal variation in rainfall and the long-term anthropogenic factors. Therefore, sustainability of surface water and aquifer may be affected by natural input and/or anthropogenic activity, both of which can evolve non-stationary in different time scales.

References

[1]  Collins, T.W. and Bolin, B. (2007) Characterizing Vulnerability to Water Scarcity: The Case of a Groundwater-Dependent, Rapidly Urbanizing Region. Environmental Hazards, 7, 399-418. https://doi.org/10.1016/j.envhaz.2007.09.009
[2]  Assouline, S., Russo, D., Silber, A. and Or, D. (2015) Balancing Water Scarcity and Quality for Sustainable Irrigated Agriculture. Water Resources Research, 51, 3419-3436. https://doi.org/10.1002/2015WR017071
[3]  Yigzaw, W. and Hossain, F. (2015) Inferring Anthropogenic Trends from Satellite Data for Water-Sustainability of US Cities Near Artificial Reservoirs. Global and Planetary Change, 133, 330-345. https://doi.org/10.1016/j.gloplacha.2015.09.013
[4]  Hurst, H.E. (1951) Long-Term Storage Capacity of Reservoirs. Transactions of the American Society of Civil Engineers, 116, 770-799. https://ci.nii.ac.jp/naid/10011004012
[5]  Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E. and Goldberger, A.L. (1994) Mosaic Organization of DNA Nucleotides. Physical Review E, 49, 1685-1689. https://doi.org/10.1103/PhysRevE.49.1685
[6]  Habib, A., Sorensen, J., Bloomfield, J., Muchan, K., Newell, A. and Butler, A. (2017) Temporal Scaling Phenomena in Groundwater-Floodplain Systems Using Robust Detrended Fluctuation Analysis. Journal of Hydrology, 549, 715-730. https://doi.org/10.1016/j.jhydrol.2017.04.034
[7]  Ihlen, E.A. (2012) Introduction to Multifractal Detrended Fluctuation in Matlab. Frontiers in Physiology, 3.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133