The aim of this study is to investigate the impact of temperature trend on glacier-mass balance, snow density, snowmelt, snow depth and runoff by using observations of nine glacier stations that covered most of the China over the period of 1979-2013. Trend analysis showed an increasing trend of temperature on all of the selected stations. On an average, temperature was increasing at the rate of 0.46/10a. The increasing trend of temperature showed a negative relationship with annual glacier-mass balance on most of the stations and caused a decrease in annual balance. Results of Pearson’s correlation analysis showed a highly significant negative correlation between temperature and snow density (correlation coefficient (CC = -0.661 at 0.01 significance level). There was a significant positive correlation between temperature and snowmelt (CC = 0.532 at 0.01 significance level). There was a significant negative correlation between temperature and snow depth (correlation coefficient (CC = -0.342 at 0.05 significance level). Moreover, there was a significant positive correlation between temperature and runoff (CC = 0.586 at 0.01 significance level). Increasing trend of temperature caused an increasing trend of annual snowmelt and runoff anomaly% at the rate of 24.82/10a and 9.87/10a, respectively. On the other hand, a declining trend in annual snow density and snow depth anomaly% was found at a rate of -5.32/10a and -1.93/10a, respectively. We concluded that the snow density, snowmelt and runoff are significantly sensitive to temperature in China. This contribution has provided information for further understanding of glacier variation and its influencing factors.
References
[1]
ACIA (2005) Arctic Climate Impact Assessment. Cambridge Univ. Press, New York, 1024 p.
[2]
Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J.G., Frey, H., Kargel, J.S., Fujita, K., Scheel, M., Bajracharya, S. and Stoffel, M. (2012) The State and Fate of Himalayan Glaciers. Science, 336, 310-315. https://doi.org/10.1126/science.1215828
[3]
Marzeion, B., Cogley, J.G., Richter, K. and Parkes, D. (2014) Attribution of Global Glacier Mass Loss to Anthropogenic and Natural Causes. Science, 345, 919-921. https://doi.org/10.1126/science.1254702
[4]
Immerzeel, W. (2008) Historical Trends and Future Predictions of Climate Variability in the Brahmaputra Basin. Int J Climatol, 28, 243-254. https://doi.org/10.1002/joc.1528
[5]
Lang, C., Fettweis, X. and Erpicum, M. (2015) Future Climate and Surface Mass Balance of Svalbard Glaciers in an RCP8.5 Climate Scenario: A Study with the Regional Climate Model MAR Forced by MIROC5. The Cryosphere, 9, 945-956. https://doi.org/10.5194/tc-9-945-2015
[6]
Wang, P.Y., Li, Z.Q., Wang, W.B., Li, H.L., Zhou, P. and Jin, S. (2013) Changes of Six Selected Glaciers in the Tomor Region, Tian Shan, Central Asia, over the Past 50 Years, Using High-Resolution Remote Sensing Images and Field Surveying. Quaternary International, 311, 123-131. https://doi.org/10.1016/j.quaint.2013.04.031
[7]
Wang, P.Y., Li, Z.Q., Jin, S., Zhou, P., Yao, H.B. and Wang, W.B. (2014) Ice Thickness, Volume and Subglacial Topography of Urumqi Glacier No. 1, Tianshan Mountains, Central Asia, by Ground Penetrating Radar Survey. J. Earth Syst. Sci, 123, 581-591. https://link.springer.com/article/10.1007%2Fs12040-014-0421-4
[8]
Ravazzani, G., Barbero, S., Salandin, A., Senatore, A. and Mancini, M. (2015) An Integrated Hydrological Model for Assessing Climate Change Impacts on Water Resources of the Upper Po River Basin. Water Resour.Manag, 29, 1193-1215. https://doi.org/10.1007/s11269-014-0868-8
[9]
Vergara, W., Deeb, A., Valencia, A., Bradley, R., Francou, B., Zarzar, A., Grünwaldt, A. and Haeussling, S. (2007) Economic Impact of Rapid Glacier Retreat in the Andes. Eos, 88, 261-269. https://doi.org/10.1029/2007EO250001
[10]
Beniston, M., Stoffel, M. and Hill, M. (2011) Impacts of Climatic Change on Water and Natural Hazards in the Alps: Can Current Water Governance Cope with Future Challenges? Examples from the European ‘‘ACQWA’’ Project. Environ. Sci. Pol., 14, 734-743. https://doi.org/10.1016/j.scitotenv.2013.11.122
[11]
Paterson, W.S.B. (1994) The Physics of Glaciers. 3rd Edition, Pergamon, Oxford, 480 p.
[12]
Sorg, A., Huss, M., Rohrer, M. and Stoffel, M. (2014) The Days of Plenty Might Soon Be over in Glacierized Central Asian Catchments. Environ. Res. Lett, 9, Article ID: 104018. https://doi.org/10.1088/1748-9326/9/10/104018
[13]
Kamb, B., Raymond, C.F., Harrison, W.D., Engelhardt, H., Echelmeyer, K.A., Humphrey, N., Brugman, M.M. and Pfeffer, T. (1985) Glacier Surge Mechanism: 1982-1983 Surge of Variegated Glacier, Alaska. Sci. New Ser, 227, 469-479. https://doi.org/10.1126/science.227.4686.469
[14]
Min, X., Haidong, H. and Shi, C.K. (2017) Modeling Glacier Mass Balance and Runoff in the Koxkar River Basin on the South Slope of the Tianshan Mountains, China, from 1959 to 2009. MDPI Water, 9, 2-19.
[15]
Häusler, H., Ng, F., Kopecny, A. and Leber, D. (2016) Remote-Sensing-Based Analysis of the 1996 Surge of Northern Inylchek Glacier, Central Tien Shan, Kyrgyzstan. Geomorphology, 273, 292-307. https://doi.org/10.1016/j.geomorph.2016.08.021
[16]
Wu, Y.W., Wang, N.L., He, J.Q. and Jiang, X. (2015) Estimating Mountain Glacier Surface Temperatures from Landsat-ETM + Thermal Infrared Data: A Case Study of Qiyi Glacier, China. Remote Sensing of Environment, 163, 286-295. https://doi.org/10.1016/j.rse.2015.03.026
[17]
Shi, P., Sun, S., Wang, M., Li, N., Wang, J., Jin, Y., Gu,, X. and Yin, W. (2014) Climate Change Regionalization in China (1961-2010). Sci. China Earth Sci, 57, 2676-2689. https://doi.org/10.1007/s11430-014-4889-1
[18]
IPCC (2013) Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change The Physical Science Basis, Summary for Policymakers, Climate Change 2013. https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WGIAR5_SPM_brochure_en.pdf
[19]
Bhogendra, M., Mukand, S.B. and Nitin, K.T. (2014) Analysis of Climatic Variability and Snow Cover in the Kaligandaki River Basin, Himalaya, Nepal. Theor Appl Climatol, 116, 681-694. https://doi.org/10.1007/s00704-013-0966-1
[20]
Petrakov, D., Shpuntova, A., Aleinikov, A., Kääb, A., Kutuzov, S., Lavrentiev, I., Stoffel, M., Tutubalina, O. and Usubaliev, R. (2016) Accelerated Glacier Shrinkage in the Ak-Shyirak Massif, Inner Tien Shan, during 2003-2013. Science of the Total Environment, 562, 364-378. https://doi.org/10.1016/j.scitotenv.2016.03.162
[21]
Zemp, M., Frey, H., Gartner-Roer, I., Nussbaumer, S.U., Hoelzle, M., Paul, F., Haeberli, W., Denzinger, F., Ahlstrom, A.P., Anderson, B., Bajracharya, S., Baroni, C., Braun, L.N., Caceres, B.E., Casassa, G., Cobos, G., Davila, L.R., Delgado, G.H., Demuth, M.N., Espizua, L., Fischer, A., Fujita, K., Gadek, B., Ghazanfar, A., Hagen, J.O., Holmlund, P., Karimi, N., Li, Z., Pelto, M., Pitte, P., Popovnin, V.V., Portocarrero, C.A., Prinz, R., Sangewar, C.V., Severskiy, I., Siguresson, O., Soruco, A., Usubaliev, R. and Vincent, C. (2015) Historically Unprecedented Global Glacier Decline in the Early 21st Century. J. Glaciol, 61, 745-762. https://doi.org/10.3189/2015JoG15J017
[22]
Pratap, B., Dobhal, D.P., Bhambri, R., Mehta, M. and Tewari, V.C. (2016) Four Decades of Glacier Mass Balance Observations in the Indian Himalaya. Reg. Environ. Change, 16, 643-658. https://doi.org/10.1007/s10113-015-0791-4
[23]
Su, Z. and Shi, Y. (2002) Response of Monsoonal Temperate Glaciers to Global Warming Since the Little Ice Age. Quaternary International, 97-98, 123-131. https://doi.org/10.1016/S1040-6182(02)00057-5
[24]
Che, Y.J., Zhang, M.J., Li, Z.Q., Li, H.L., Wang, S.J., Sun, M.P. and Zh, S.P. (2017) Glacier Mass-Balance and Length Variation Observed in China during the Periods 1959-2015 and 1930-2014. Quaternary International, 445, 68-84. https://doi.org/10.1016/j.quaint.2017.07.003
[25]
Dobhal, D., Gergan, J.T. and Thayyen, R. (2004) Recession and Morphogeometrical Changes of Dokriani Glacier (1962-1995), Garhwal Himalaya, India. Curr Sci, 86, 692-696.
[26]
Bolch, T., Buchroithner, M., Pieczonka, T. and Kunert, A. (2008) Planimetric and Volumetric Glacier Changes in the Khumbu Himal, Nepal, Since 1962 Using Corona, Landsat TM and ASTER Data. J Glaciol, 54, 592-600. https://doi.org/10.3189/002214308786570782
[27]
Adam, J.C., Hamlet, A.F. and Lettenmaier, D.P. (2009) Implications of Global Climate Change for Snowmelt Hydrology in the Twenty-First Century. Hydrol Process, 23, 962-972. https://doi.org/10.1002/hyp.7201
[28]
Wang, P.Y., Li, Z.Q., Wang, W.B., Li, H.L., Wu, L.H., Huai, B.J., Zhou, P., Jin, S. and Wang, L. (2016) Comparison of Changes in Glacier Area and Thickness on the Northern and Southern Slopes of Mt. Bogda, Eastern Tianshan Mountains. Journal of Applied Geophysics, 132, 164-173. https://doi.org/10.1016/j.jappgeo.2016.07.009
[29]
Ma, L.L., Tian, L.D., Pu, J.C. and Wang, P.L. (2010) Recent Area and Ice Volume Change of Kangwure Glacier in the Middle of Himalayas. Chinese Science Bulletin, 55, 2088-2096.
[30]
Shangguan, D.H., Liu, S.Y. and Ding, L.F. (2008) Variation of Glaciers in the Western Nyainqêntanglha Range of Tibetan Plateau during 1970-2000. J Glaciol Geocryol, 30, 204-210. (In Chinese)
[31]
Yu, W.S., Yao, T.D., Kang, S.H., Pu, J.C., Yang, W., Gao, T.G., Zhao, H.B., Zhou, H., Li, S.H., Wang, W.C. and Ma, L.L. (2013) Different Region Climate Regimes and Topography Affect the Changes in Area and Mass Balance of Glaciers on the North and South Slopes of the Same Glacierized Massif (the West Nyainqentanglha Range, Tibetan Plateau). Journal of Hydrology, 495, 64-73. https://doi.org/10.1016/j.jhydrol.2013.04.034
[32]
Liu, Y.S., Qin, X., Zhang, T., Zhang, M.J. and Du, W.T. (2013) The Change of Ningchan River Glacier No. 3 at Lenglongling, East Qilian Mountain, China. Sciences in Cold and Arid Regions, 5, 0709-0714. https://doi.org/10.3724/SP.J.1226.2013.00709
[33]
Xu, X.K. and Glasser, N.F. (2015) Glacier Sensitivity to Equilibrium Line Altitude and Reconstruction for the Last Glacial Cycle: Glacier Modeling in the Payuwang Valley, Western Nyaiqentanggulha Shan, Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 440, 614-620. https://doi.org/10.1016/j.palaeo.2015.09.025
[34]
Hongbo, W.U., Ninglian, W., Xi, J. and Zhongming, G. (2014) Variations in Water Level and Glacier Mass Balance in Nam Co Lake, Nyainqentanglha Range, Tibetan Plateau, Based on ICESat Data for 2003-09. Annals of Glaciology, 55, 239-247. https://doi.org/10.3189/2014AoG66A100
[35]
Kääb, A., Treichler, D., Nuth, C. and Berthier, E. (2015) Brief Communication: Contending Estimates of 2003-2008 Glacier Mass Balance over the Pamir-Karakoram-Himalaya. Cryosphere, 9, 557-564. https://doi.org/10.5194/tc-9-557-2015
[36]
Xu, X.K., Pan, B., Hu, E., Li, Y.J. and Liang, Y.H. (2011) Responses of Two Branches of Glacier No. 1 to Climate Change from 1993 to 2005, Tianshan, China. Quaternary International, 236, 143-150. https://doi.org/10.1016/j.quaint.2010.06.013
[37]
Jing, Z.F., Liu, L., Zhou, Z.M. and Deng, Y.F. (2012) Analysis on Factors of Glacier Velocity: A Case Study of the Qiyi Glacier, Qilian Mountains. Sciences in Cold and Arid Regions, 4, 0275-0280. https://doi.org/10.3724/SP.J.1226.2012.00275
[38]
Li, K., Li, Z., Gao, W. and Wang, L. (2011) Recent East Tianshan Glacier Retreat and Its Impact on Water Resources. Chin. Sci. Bull, 56, 27082716.
[39]
Li, Z.Q., Gao, W.H., Zhang, M.J. and Gao, W.Y. (2012) Variations in Suspended and Dissolved Matter Fluxes from Glacial and Non-Glacial Catchments during a Melt Season at Urumqi River, Eastern Tianshan, Central Asia. Catena, 95, 42-49. https://doi.org/10.1016/j.catena.2012.03.00
[40]
Nie, Y., Liu, Q. and Liu, S. (2013) Glacial Lake Expansion in the Central Himalayas by Landsat Images, 1990-2010. PLoS ONE, 8, e83973. https://doi.org/10.1371/journal.pone.0083973
[41]
Jevrejeva, S., Moore, J.C. and Grinsted, A. (2008) Relative Importance of Mass and Volume Changes to Global Sea Level Rise. Journal of Geophysical Research, 113, D08105. https://doi.org/10.1029/2007JD009208