全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

High Resolution Mass Spectrometry for the Recognition and Structural Characterization of a New Antimicrobial Compound

DOI: 10.4236/pp.2018.95011, PP. 135-148

Keywords: Antibiotic Development, Antibiotic Discovery, High Resolution Mass Spectrometry, Molecular Formula, MS/MS Fragmentation, FT ICR MS

Full-Text   Cite this paper   Add to My Lib

Abstract:

Identification of novel specialized metabolites or bioactive compounds represents the main objective in the research field of natural product leads and drug discovery. Mass spectrometry (MS) provides a central tool to expedite and make more efficient the discovery and isolation phases, while minimizing the waste of resources on rediscovery of known compounds. MS contributes acutely to elucidation and identification of numerous species because it allows molecular mass and structural features determination. In particular, identification of the elemental composition of a precursor ion of interest by accurate mass measurement and investigation of dissociative processes undergone by the molecule, represent a worthy methodology to access the structure assignment. The aim of this study was to discover and identify novel antibacterial drugs from microbial source in a jungle of already known compounds. The focus of this paper is on the analytical strategy that permitted the disclosure of a new compound, otherwise confused with other substances. Emphasis is placed on the interpretation of the ESI-MS/MS fragmentation pattern that combined with high resolution mass determination, allowed step by step to properly deduce the exact molecular formula of an unknown component with a molecular weight higher than 1500 Daltons.

References

[1]  Bal, A.M., David, M.Z., Garau, J., Gottlie, T., Mazzei, T., Scaglione, F., Tatteving, P. and Gould, I.M. (2017) Future Trends in the Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA) Infection: An In-Depth Review of Newer Antibiotics Active Against an Enduring Pathogen. Journal of Global Antimicrobial Resistance, 10, 295-303.
https://doi.org/10.1016/j.jgar.2017.05.019
[2]  David, M.Z., Dryden, M., Gottlieb, T., Tattevind, P. and Goulde, M. (2017) Recently Approved Antibacterials for Methicillin-Resistant Staphylococcus aureus (MRSA) and Other Gram-Positive Pathogens: The Shock of the New. International Journal of Antimicrobial Agents, 50, 303-307. https://doi.org/10.1016/j.ijantimicag.2017.05.006
[3]  Bassett, E.J., Keith, M.S., Armelagos, G.J., Martin, D.L. and Villanueva, A.R. (1980) Tetracycline-Labeled Human Bone from Ancient Sudanese Nubia (A.D.350). Science, 209, 1532-1534.
https://doi.org/10.1126/science.7001623
[4]  Nelson, M.L., Dinardo, A., Hochberg, J. and Armelagos, G.J. (2010) Brief Communication: Mass Spectroscopic Characterization of Tetracycline in the Skeletal Remains of an Ancient Population from Sudanese Nubia 350-550 CE. American Journal of Physical Anthropology, 143, 151-154.
https://doi.org/10.1002/ajpa.21340
[5]  Cook, M., Molto, E. and Anderson, C. (1989) Fluorochrome Labelling in Roman Period Skeletons from Dakhleh Oasis, Egypt. American Journal of Physical Anthropology, 80, 137-143.
https://doi.org/10.1002/ajpa.1330800202
[6]  Fair, R.J. and Tor, Y. (2014) Antibiotics and Bacterial Resistance in the 21st Century. Perspectives in Medicinal Chemistry, 6, 25-64.
https://doi.org/10.4137/PMC.S14459
[7]  McArthur, A.G., Waglechner, N., Nizam, F., Yan, A., Azad, M.A., Baylay, A.J., Bhullar, K., Canova, M.J., De Pascale, G., Ejim, L., Kalan, L., King, A.M., Koteva, K., Morar, M., Mulvey, M.R., O’Brien, J.S., Pawlowski, A.C., Piddock, L.J., Sutherland, A.D., Tang, I., Taylor, P.L., Thaker, M., Wang, W., Yan, M., Yu, T. and Wright, G.D. (2013) The Comprehensive Antibiotic Resistance Database. Antimicrobial Agents and Chemotherapy, 57, 3348-3357.
https://doi.org/10.1128/AAC.00419-13
[8]  Peterson, L.R. (2009) Bad Bugs, No Drugs: No ESCAPE Revisited. Clinical Infectious Diseases, 49, 992-993.
https://doi.org/10.1086/605539
[9]  Boucher, H.W., Talbot, G.H., Bradley, J.S., Edwards, J.E., Gilbert, D., Rice, L.B., Scheld, M., Spellberg, B. and Bartlett, J. (2009) Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clinical Infectious Diseases, 48, 1-12.
https://doi.org/10.1086/595011
[10]  Brown, E.D. and Wright, G.D. (2016) Antibacterial Drug Discovery in the Resistance era. Nature, 529, 336-343.
https://doi.org/10.1038/nature17042
[11]  Newman, D.J. and Cragg, G.M. (2016) Natural Products as Sources of New Drugs from 1981 to 2014. Journal of Natural Products, 79, 629-661.
https://doi.org/10.1021/acs.jnatprod.5b01055
[12]  Newman D. (2017) Screening and Identification of Novel Biologically Active Natural Compounds 1000 Research, 6 (F1000FacultyRev), 783.
[13]  Esquenazi, E., Yang, Y.-L., Watrous, J., Gerwick, W.H. and Dorrestein, P.C. (2009) Imaging mass Spectrometry of Natural Products. Natural Product Reports, 26, 1521-1534.
https://doi.org/10.1039/b915674g
[14]  Carrano, L. and Marinelli, F. (2015) The Relevance of Chemical Dereplication in Natural Product Screening. Journal of Applied Bioanalysis, 1, 55-67.
https://doi.org/10.17145/jab.15.010
[15]  Kersten, R.D., Ziemert, N., Gonzalez, D.J., Duggan, B.M., Nizet, V., Dorrestein, P.C. and Moore, B.S. (2013) Glycogenomics as a Mass Spectrometry-Guided Genome-Mining Method for Microbial Glycosylated Molecules. Proceedings of the National Academy of Sciences of the United States of America, 110, E4407-E4416.
https://doi.org/10.1073/pnas.1315492110
[16]  Henke, M.T. and Kelleher, N.H. (2016) Modern Mass Spectrometry for Synthetic Biology and Structure-Based Discovery of Natural Products. Natural Product Reports, 33, 942-950.
https://doi.org/10.1039/C6NP00024J
[17]  Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F. and Whitehouse, C.M. (1989) Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science, 246, 64. https://doi.org/10.1126/science.2675315
[18]  Loo, J.A., Quinn, J.P., Ryu, S.I., Henry, K.D., Senko, M.W. and McLafferty, F.W. (1992) High-Resolution Tandem Mass Spectrometry of Large Biomolecules. Proceedings of the National Academy of Sciences, 89, 286-289.
https://doi.org/10.1073/pnas.89.1.286
[19]  Ganem, B., Li, Y.-T. and Henion, J.D. (1991) Detection of Noncovalent Receptor-Ligand Complexes by Mass Spectrometry. Journal of the American Chemical Society, 113, 6294-6296.
https://doi.org/10.1021/ja00016a069
[20]  Gelpi, E. (2008) From Large Analogical Instruments to Small Digital Black Boxes: 40 Years of Progress in Mass Spectrometry and Its Role in Proteomics. Part I 1965-1984. Journal of Mass Spectrometry, 43, 419-435.
https://doi.org/10.1002/jms.1403
[21]  Korfmacher, W.A. (2005) Using Mass Spectrometry for Drug Metabolism Studies. CRC Press, Boca Raton, 1-34.
[22]  Caprioli, R.M., Malorni, A. and Sindona, G. (1997) Selected Topics in Mass Spectrometry in the Biomolecular Sciences. Nato Science Series C: Mathematical and Physical Sciences, Vol. 504.
https://doi.org/10.1007/978-94-011-5165-8
[23]  Kersten, R.D., Yang, Y.L., Xu, Y., Cimermancic, P., Nam, S.J., Fenical, W., Fischbach, M.A., Moore, B.S. and Dorrestein, P.C. (2011) A Mass Spectrometry-Guided Genome Mining Approach for Natural Product Peptidogenomics. Nature Chemical Biology, 7, 794-802.
https://doi.org/10.1038/nchembio.684
[24]  Lynn, K., Cheng, M.-L., Chen, Y.-R., Hsu, C., Chen, A., Lih, T.M., Chang, H.-Y., Huang, C., Shiao, M.-S., Pan, W.-H., Sung, T.-Y. and Hsu, W.-L (2015) Metabolite Identification for Mass Spectrometry-Based Metabolomics Using Multiple Types of Correlated Ion Information. Analytical Chemistry, 87, 2143-2151.
https://doi.org/10.1021/ac503325c
[25]  Castiglione, F., Lazzarini, A., Carrano, L., Corti, E., Ciciliato, I., Gastaldo, L., Candiani, P., Losi, D., Marinelli, F., Selva, E. and Parenti, F. (2008) Determining the Structure and Mode of Action of Microbisporicin, a Potent Lantibiotic Active against Multiresistant Pathogens. Chemistry & Biology, 15, 22-31.
https://doi.org/10.1016/j.chembiol.2007.11.009
[26]  Carrano, L., Abbondi, M., Turconi, P., Candiani, G. and Marinelli, F. (2015) A Novel Microbisporicin Producer Identified by Early Dereplication during Lantibiotic Screening. BioMed Research International, 2015, Article ID: 419383.
https://doi.org/10.1155/2015/419383

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133