Brazil is the world largest producer of sugarcane (Saccharum officinarum) leading to a great generation of residues such as bagasse and straw, which represent two thirds of sugarcane energetic potential. Regarding these residues energetic potential, it is interesting to study their application in biorefinery processes. Thus, this work aimed at performing a chemical characterization of sugarcane straw and bagasse from RB867515 cultivar grown in Rio Grande do Sul-Brazil aiming at their use as feedstock in biorefinery processes. The obtained results were compared to data from other states and it was possible to conclude that edaphoclimatic conditions of Rio Grande do Sul have little influence in sugarcane residues chemical composition. Sugarcane bagasse presents larger potential for energetic use because of its volatiles content (74.82%) slightly higher than straw (68.90%), besides its high lignin content (21.85%) and higher calorific value (18.70 MJ/kg). Both sugarcane residues produced in Rio Grande do Sul have potential use as substrate in the obtainment of high value-added products from their cellulosic fractions (41.30% and 37.25%, respectively). The evaluation of energetic and chemical potential of sugarcane bagasse and straw produced in Rio Grande do Sul leads to the conclusion that these materials have high potential for use as feedstock in biorefineries.
References
[1]
Huang, C.F., Jiang, Y.F., Guo, G.L. and Hwang, W.S. (2013) Method of 2,3-Butanediol Production from Glycerol and Acid-Pretreated Rice Straw Hydrolysate by Newly Isolated Strains: Pre-Evaluation as an Integrated Biorefinery Process. Bioresource Technology, 135, 446-453. https://doi.org/10.1016/j.biortech.2012.10.141
[2]
Santos, F., Colodette, J. and Queiroz, J.H. (2013) Bioenergia e Biorrefinaria-Cana-de-Açúcar e Espécies Florestais (Bioenergy and Biorefinery-Sugarcane and Forestry Species). Editora UFV, Viçosa.
[3]
Singh, R., Srivastava, V., Chaudhary, K., Gupta, P., Prakash, A., Balagurumurthy, B. and Bhaskar, T. (2015) Conversion of Rice Straw to Monomeric Phenols under Supercritical Methanol and Ethanol. Bioresource Technology, 188, 280-286. https://doi.org/10.1016/j.biortech.2015.01.001
[4]
Kim, I., Lee, B., Park, J.Y., Choi, S.A. and Han, J.I. (2014) Effect of Nitric Acid on Pretreatment and Fermentation for Enhancing Ethanol Production of Rice Straw. Carbohydrate Polymers, 99, 563-567. https://doi.org/10.1016/j.carbpol.2013.08.092
[5]
Santos, F.A., Queiroz, J.H., Colodette, J.L., Manfredi, M., Queiroz, M.E.L.R., Caldas, C.S. and Soares, F.E.F. (2014) Otimização do pré-tratamento hidrotérmico da palha de cana-de-a çúcar visando à Produção de etanol celulósico. (Optimization of Hydrothermal Pretreatment in Sugarcane Straw Aiming Second Generation Ethanol Production) Química Nova, 37, 56-62. https://doi.org/10.1590/S0100-40422014000100011
[6]
Conab. Companhia Nacional do Abastecimento. (2015) Acompanhamento safra brasileira cana (Following Brazilian Sugarcane Harvest). Vol. 2, Brasília, 1-65.
[7]
Verissimo, M.A.A. (2012) Desempenho agronômico de genótipos de cana-de-açúcar no estado do Rio Grande do Sul (Agricultural Development of Sugarcane Genotypes in the State of Rio Grande do Sul). M.S. Thesis, Universidade Federal de Pelotas, Pelotas.
Santos, F.A., Queiróz, J.H., Colodette, J.L., Fernandes, S.A., Guimarães, V.M. and Rezende, S.T. (2012) Potencial da palha de cana-de-açúcar para produção de etanol. (Potential of Sugarcane Straw in Ethanol Production) Química Nova, 35, 1004-1010. https://doi.org/10.1590/S0100-40422012000500025
[10]
Tappi. (1988). Tappi Test Methods. Tappi Press, Atlanta.
[11]
Associação Brasileira de Normas Técnicas (1986) NBR 8112: Charcoal—Immediate Chemical Analysis—Experiment Method. ABNT, Rio de Janeiro.
[12]
Thompson, M. (2008) CHNS Elemental Analysers. AMC Technical Briefs. The Royal Society of Chemistry.
[13]
Fangueiro, R. and Rana, S. (2016) Natural Fibres: Advances in Science and Technology towards Industrial Applications. Springer, New York City.
[14]
Souza, A.F.R.C. (2013) Study of Bio-Oil Production Feasibility through Fast Pyrolisis Process of Sugarcane Bagasse. Final Project, Universidade de Brasília, Gama.
[15]
Seye, O., Cortez, L.A.B. and Gómez, E.O. (2003) Kinetic Study of Biomass through Thermogravimetric Results. Encontro de Energia no Meio Rural, No. 3.
[16]
Ferreira, R.A.R. (2012) Contribution to Kinetic Study and Energy Balance of Autothermal Pyrolysis of Sugarcane Straw through Thermogravimetric Analysis and Calorimetry. M.S. Thesis, Universidade Federal de Uberlandia, Uberlandia.
[17]
Vieira, A.C. (2012) Characterization of Biomass from Agricultural Waste for Power Generation. M.S. Thesis, Universidade Estadual do Oeste do Paraná, Cascavel.
[18]
Reis, A.A., Protásio, T.P., Melo, I.C.N.A., Trugilho, P.F. and Carneiro, A.C.O. (2012) Wood Composition and Charcoal of Eucalyptus urophylla in Different Planting Locations. Revista Florestal Brasileira, 32, 277-290. https://doi.org/10.4336/2012.pfb.32.71.277
[19]
Carvalho, D.M. (2012) Phsical-Chemical Characterization and Ethanol/Soda Pulping of Sugarcane Bagasse and Straw. M.S. Thesis, Universidade Federal de Viçosa, Viçosa.
[20]
Almeida, M.B.B. (2008) Bio-Oil from Sugar Cane Straw Fast Pyrolysis, Thermal and Catalytic, and Its Co-Processing with Gasoil in Catalytic Cracking. M.S. Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro.
[21]
Basu, P. (2006) Combustion and Gasification in Fluidized Beds. CRC Press, Boca Raton. https://doi.org/10.1201/9781420005158
[22]
Santos, F.A. (2013) Evaluation of Hydrothermal Pretreatment of Sugar Cane Straw Aiming Second Generation Ethanol Production. PhD Thesis, Universidade Federal de Viçosa, Viçosa.
[23]
Silva, M.B. and Morais, A.S. (2008) Energetic Evaluation of Sugarcane Bagasse in Different Moisture Contents and Compactation States. Proceedings of 28th Encontro Nacional de Engenharia de Produção, Rio de Janeiro, 13-16 October 2008, 1-9.
[24]
Oliveira, S.F.A. (2014) Energetic Evaluation of Sugarcane Bagasse Biomass in Different Sucroenergetic Industries. M.S. Thesis, Instituto Tecnológico de Aeronáutica, São José dos Campos.
[25]
Quirino W.F. ,et al. (2005)Calorific Value of Wood and Lignocellulosic Materials Revista da Madeira 89, 100-106.
[26]
Lira, R.C., Nascimento, M.S., Silva, M.J. and Rocha, G.J.M. (2013) Pretreatment of Sugarcane Bagasse and Straw in a Semi-Pilot Reactor and Evaluation of Pretreated Biomass Enzymatic Hydrolysis. Proceedings of I CONICBIO/II CONABIO/VI SIMCBIO, Recife, 11-14 November 2013, 1-8.
[27]
Rabelo, S.C. (2010) Evaluation and Optimization of Pretreatment and Enzymatic Hydrolysis of Sugarcane Bagasse for the Production of Second Generation Ethanol. PhD Thesis, Universidade Estadual de Campinas, Campinas.
[28]
Pitarelo, A.P. (2007) Evaluation of the Susceptibility of Sugarcane Bagasse and Straw Bioconversion by Steam Pretreatment and Enzymatic Hydrolysis. M.S. Thesis, Universidade Federal do Paraná, Curitiba.
[29]
Sindhu, R., Gnansounou, E., Binod, P. and Pandey, A. (2016) Bioconversion of Sugarcane Crop Residue for Value Added Products—An Overview. Renewable Energy, 98, 203-215. https://doi.org/10.1016/j.renene.2016.02.057
[30]
Machado, G., Leon, S., Santos, F., Lourega, R., Dullius, J., Mollmann, M.E. and Eichler, P. (2016) Literature Review on Furfural Production from Lignocellulosic Biomass. Natural Resources, 7, 115-129. https://doi.org/10.4236/nr.2016.73012
[31]
Sousa-Aguiar, E.F., Appel, L.G., Zonetti, P.C., Fraga, A.C., Bicudo, A.A. and Fonseca, I. (2014) Some Important Catalytic Challenges in the Bioethanol Integrated Biorefinery. Catalysis Today, 234, 13-23. https://doi.org/10.1016/j.cattod.2014.02.016
[32]
Okamoto, K., Nitta, Y., Maekawa, N. and Yanase, H. (2011) Direct Ethanol Production from Starch, Wheat Bran and Rice Straw by the White Rot Fungus Trametes hirsuta. Enzyme and Microbial Technology, 48, 273-277. https://doi.org/10.1016/j.enzmictec.2010.12.001
[33]
Amiri, H., Karimi, K. and Zilouei, H. (2014) Organosolv Pretreatment of Rice Straw for Efficient Acetone, Butanol, and Ethanol Production. Bioresource Technology, 152, 450-456. https://doi.org/10.1016/j.biortech.2013.11.038
[34]
órfão, J.J.M. and Figueiredo, J.L. (2001) A Simplified Method for Determination of Lignocellulosic Materials Pyrolysis Kinetics from Isothermal Thermogravimetric Experiments. Thermochimica Acta, 380, 67-80. https://doi.org/10.1016/S0040-6031(01)00634-7
[35]
Alvarez, V. and Vázquez, A. (2004) Thermal Degradation of Cellulose Derivatives/Starch Blends and Sisal Fibre Biocomposites. Polymer Degradation and Stability, 84, 13-21. https://doi.org/10.1016/j.polymdegradstab.2003.09.003
[36]
Pereira, B.L.C., Carneiro, A.C.O., Carvalho, A.M.M., Trugilho, P.F., Melo, I.C.N.A. and Oliveira, A.C. (2013) Study of Thermal Degradation of Eucalyptus Wood by Thermogravimetry and Calorimetry. Revista árvore, 37, 567-576. https://doi.org/10.1590/S0100-67622013000300020