全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Visible Light Photocatalytic Degradation of Methylene Blue and Malachite Green Dyes with CuWO4-GO Nano Composite

DOI: 10.4236/mrc.2018.72002, PP. 17-34

Keywords: Copper Tungstate, Graphene Oxide, Metathesis, Methylene Blue, Malachite Green, Visible Light Photodegradation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Copper Tungstate-Graphene Oxide nano composites have been successfully applied as excellent catalysts for the photocatalytic degradation with Methylene blue and Malachite green dyes under visible light irradiation. A facile?solid state metathesis synthesis of copper tungstate (CuWO4) followed by ball milling and subsequent preparation of copper tungstate-graphene oxide?(CuWO4-GO) nano composite using a colloidal blending process and its application as a visible light photocatalyst for the degradation of Malachite green and Methylene blue dyes. The morphology and composition of copper tungstate (CuWO4) nano composite have been characterized using X-Ray Diffraction (XRD), UV-Visible Diffuse Reflectance Spectra (UV-DRS), Raman Spectra, Field Emission Scanning Electron Microscopy (FESEM)-EDS and UV Visible Spectroscopy. It shows a band gap value of 2.13 eV, an increase in range and intensity of light absorption and the reduction of electron-hole pair recombination in CuWO4 with the introducing of GO on to it.

References

[1]  Honda, K. and Fujishima, A. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38.
https://doi.org/10.1038/238037a0
[2]  Michael, R., Hoffmann, Scot, T.M., Wonyong, C. and Detlef, W.B. (1995) Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95, 69-96.
[3]  Li, F.B., Li, X.Z. and Hou, M.F. (2004) Photo Catalytic Degradation of 2-Merca- ptobiazole in Aqueous La3+-TiO2 Suspention for Odor Control. Applied Catalysis B, 48, 185-194.
https://doi.org/10.1016/j.apcatb.2003.10.003
[4]  Chamberland, B.L., Kafalas, J.A. and Goodenough, J.B. (1977) Characterization of Chromium Manganese Oxide (MnCrO3) and Chromium(III) Manganate. Inorganic Chemistry, 16, 44-46.
[5]  Gillette, R.H. (1950) Calcium and Cadmium Tungstate as Scintillation Counter Crystals for Gamma-Ray Detection. Review of Scientific Instruments, 21, 294-301.
https://doi.org/10.1063/1.1745567
[6]  Gopalakrishnan, J., Sivakumar, T., Ramesha, K., Thangadurai, V. and Subbanna, G.N. (2000) Transformations of Ruddlesden-Popper Oxides to New Layered Perovskite Oxides by Metathesis Reactions. Journal of the American Chemical Society, 122, 6237.
https://doi.org/10.1021/ja9914644
[7]  Sivakumar, T., Lofland, S.E., Ramanujachary, K.V., Ramesha, K., Subbanna, G.N. and Gopalakrishnan, J. (2004) Transforming n =1 Members of the Ruddlesden-Popper Phases to a n = 3 Member through Metathesis: Synthesis of a New Layered Perovskite, Ca2La2CuTi2O10. Journal of Solid State Chemistry, 177, 2635.
https://doi.org/10.1016/j.jssc.2004.03.030
[8]  Mandal, T.K. and Gopalakrishnan, J. (2004) Fromrocksalt to Perovskite: A Metathesis Route for the Synthesis of Perovskite Oxides of Current Interest. Journal of Materials Chemistry, 14, 1273.
https://doi.org/10.1039/b315263d
[9]  Mani, R., Bhuvanesh, N.S.P., Ramanujachary, K.V, Green, W., Lofland, S.E. and Gopalakrishnan, J. (2007) A Novel One-Pot Metathesis Route for the Synthesis of Double Perovskites, Ba3MM’2O9 (M = Mg, Ni, Zn; M’ = Nb, Ta) with 1:2 Ordering of M and M’ Atoms. Journal of Materials Chemistry, 17, 1589.
https://doi.org/10.1039/B616238J
[10]  Gillanand, E.G. and Kaner, R.B. (2001) Rapid, Energetic Metathesis Routes to Crystalline Metastable Phases of Zirconium and Hafnium Dioxide. Journal of Materials Chemistry, 11, 1951.
https://doi.org/10.1039/b102234m
[11]  Wiley, J.B., Gillan, E.G. and Kaner (1993) Rapid Soil State Metatheis Reactions for Te Synthesis of Copper of Oxide and Other Metal Oxides. Materials Research Bulletin, 28, 893.
https://doi.org/10.1016/0025-5408(93)90035-C
[12]  Ruiz-Fuertes, J., et al. (2010) High-Pressure Structural Phase Transitions in CuWO4. Physical Review B, 81, Article ID: 224115.
https://doi.org/10.1103/PhysRevB.81.224115
[13]  Yourey, J.E. and Bartlett, B.M. (2011) Electrochemical Deposition and Photoelectrochemistry of CuWO4, a Promising Photoanode for Water Oxidation. Journal of Materials Chemistry, 21, 7651-7660.
https://doi.org/10.1039/c1jm11259g
[14]  Chang, Y., Braun, A., Deangelis, A., Kaneshiro, J. and Gaillard, N. (2011) Effect of Thermal Treatment on the Crystallographic, Surface Energetics, and Photoelectrochemical Properties of Reactively Cosputtered Copper Tungstate for Water Splitting. The Journal of Physical Chemistry, 115, 25490-25495.
[15]  Paulchamy, B., Arthi, G. and Lignesh, B.D. (2015) A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial. Journal of Nanomedicine and Nanotechnology, 6, 1
[16]  Xu, Z. and Gao, C. (2011) Graphene Chiral Liquid Crystals and Macroscopic Assembled Fibers. Nature Communication, 2, Article No. 571.
https://doi.org/10.1038/ncomms1583
[17]  Cong, H.P., Ren, X.C., Wang, P. and Yu, S.H. (2012) Wet-Spinning Assembly of Continuous, Neat and Macroscopic Graphene Fibers. Scientific Reports, 2, Article No. 613.
https://doi.org/10.1038/srep00613
[18]  Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. and Ruoff, R.S. (2010) Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 22, 3906-3924.
https://doi.org/10.1002/adma.201001068
[19]  Du, X., Skachko, I., Barker, A. and Andrei, E. (2008) Approaching Ballistic Transport in Suspended Graphene. Nature Nanotechnology, 3, 491-495.
https://doi.org/10.1038/nnano.2008.199
[20]  Lee, C., Wei, X., Kysar, J.W. and Hone, J. (2008) Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321, 385-388.
https://doi.org/10.1126/science.1157996
[21]  Kim, J.E., Han, T.H., Lee, S.H., Kim, J.Y., Ahn, C.W., Yun, J.M. and Kim, S.O. (2011) Graphene Oxide Liquid Crystals. Angewandte Chemie International Edition, 50, 3043-3047.
https://doi.org/10.1002/anie.201004692
[22]  Ayrat, M.D. and James, M.T. (2014) Mechanism of Graphene Oxide Formation. ACS Nano, 8, 3060-3068.
https://doi.org/10.1021/nn500606a
[23]  Aliofkhazraei, M., Ali, N., Milne, W.I., Ozkan, C.S., Mitura, S. and Juana, L. (2016) Graphene Science Handbook: Fabrication Methods. CRC Press, Boca Raton.
[24]  Wan, K.J. and Hyun, J.K. (2013) Titanium Dioxide-Graphene Oxide Composites with Different Ratios Supported by Pyrex Tube for Photocatalysis of Toxic Aromatic Vapors. Powder Technology, 250, 115-121.
https://doi.org/10.1016/j.powtec.2013.10.017
[25]  Chao, W., Ying, H., Xin, Z., Xuefang, C. and Jing, Y. (2016) Soft-Template Hydro Thermal Systhesis of Nanostructured Copper(II) Tungstate Cubes for Electrochemical Charge Storage Application. Electrochimica Acta, 220, 156-163.
https://doi.org/10.1016/j.electacta.2016.10.056
[26]  Muthamizh, S., Suresh, R., Giribabu, K., Manigandan, R. and Praveen, S. (2014) Solid State Synthesis of Copper Tungstate Nanoparticles and Its Electrochemical Detection of 4-Chlorophenol. AIP Conference Proceedings, 1591, 508-510.
https://doi.org/10.1063/1.4872655
[27]  Hu, X., Meng, X. and Zhang, Z. (2016) Synthesis and Characterization of Graphene Oxide-Modified Bi2WO6 and Its Use as Photocatalyst. International Journal of Photoenergy, 10, 1155.
[28]  Meng, X., Jiang, L., Wang, W. and Zhang, Z. (2015) Enhanced Photocatalytic Activity of BiOBr/ZnO Heterojunction Semiconductors Prepared by Facile Hydrothermal Method. International Journal of Photoenergy, 9, Article ID: 747024.
[29]  Huang, H., Zhen, S., Li, P., Tzeng, S. and Chiang, H. (2016) Confined Migration of Induced Hot Electrons in Ag/graphene/TiO2 Composite Nanorods for Plasmonic Photocatalytic Reaction. Optics Express, 24, 15603-15608.
https://doi.org/10.1364/OE.24.015603

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133